IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms14465.html
   My bibliography  Save this article

Superconductivity in a chiral nanotube

Author

Listed:
  • F. Qin

    (The University of Tokyo)

  • W. Shi

    (The University of Tokyo
    Lawrence Berkeley National Laboratory)

  • T. Ideue

    (The University of Tokyo)

  • M. Yoshida

    (The University of Tokyo)

  • A. Zak

    (Faculty of Sciences, Holon Institute of Technology)

  • R. Tenne

    (Weizmann Institute of Science)

  • T. Kikitsu

    (RIKEN Center for Emergent Matter Science (CEMS))

  • D. Inoue

    (RIKEN Center for Emergent Matter Science (CEMS))

  • D. Hashizume

    (RIKEN Center for Emergent Matter Science (CEMS))

  • Y. Iwasa

    (The University of Tokyo
    RIKEN Center for Emergent Matter Science (CEMS))

Abstract

Chirality of materials are known to affect optical, magnetic and electric properties, causing a variety of nontrivial phenomena such as circular dichiroism for chiral molecules, magnetic Skyrmions in chiral magnets and nonreciprocal carrier transport in chiral conductors. On the other hand, effect of chirality on superconducting transport has not been known. Here we report the nonreciprocity of superconductivity—unambiguous evidence of superconductivity reflecting chiral structure in which the forward and backward supercurrent flows are not equivalent because of inversion symmetry breaking. Such superconductivity is realized via ionic gating in individual chiral nanotubes of tungsten disulfide. The nonreciprocal signal is significantly enhanced in the superconducting state, being associated with unprecedented quantum Little-Parks oscillations originating from the interference of supercurrent along the circumference of the nanotube. The present results indicate that the nonreciprocity is a viable approach toward the superconductors with chiral or noncentrosymmetric structures.

Suggested Citation

  • F. Qin & W. Shi & T. Ideue & M. Yoshida & A. Zak & R. Tenne & T. Kikitsu & D. Inoue & D. Hashizume & Y. Iwasa, 2017. "Superconductivity in a chiral nanotube," Nature Communications, Nature, vol. 8(1), pages 1-6, April.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14465
    DOI: 10.1038/ncomms14465
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms14465
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms14465?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Šetrajčić, Jovan P. & Ilić, Dušan I. & Jaćimovski, Stevo K. & Vučenović, Siniša M., 2021. "Impact of surface conditions changes on changes in thermodynamic properties of quasi 2D crystals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    2. Taras Golod & Vladimir M. Krasnov, 2022. "Demonstration of a superconducting diode-with-memory, operational at zero magnetic field with switchable nonreciprocity," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Yuki M. Itahashi & Toshiya Ideue & Shintaro Hoshino & Chihiro Goto & Hiromasa Namiki & Takao Sasagawa & Yoshihiro Iwasa, 2022. "Giant second harmonic transport under time-reversal symmetry in a trigonal superconductor," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Zhaowei Zhang & Naizhou Wang & Ning Cao & Aifeng Wang & Xiaoyuan Zhou & Kenji Watanabe & Takashi Taniguchi & Binghai Yan & Wei-bo Gao, 2022. "Controlled large non-reciprocal charge transport in an intrinsic magnetic topological insulator MnBi2Te4," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    5. Bumseop Kim & Noejung Park & Jeongwoo Kim, 2022. "Giant bulk photovoltaic effect driven by the wall-to-wall charge shift in WS2 nanotubes," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Geert L. J. A. Rikken & Narcis Avarvari, 2022. "Dielectric magnetochiral anisotropy," Nature Communications, Nature, vol. 13(1), pages 1-5, December.
    7. James Jun He & Yukio Tanaka & Naoto Nagaosa, 2023. "The supercurrent diode effect and nonreciprocal paraconductivity due to the chiral structure of nanotubes," Nature Communications, Nature, vol. 14(1), pages 1-6, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.