IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-10658-3.html
   My bibliography  Save this article

Nonreciprocal charge transport at topological insulator/superconductor interface

Author

Listed:
  • Kenji Yasuda

    (University of Tokyo
    Massachusetts Institute of Technology)

  • Hironori Yasuda

    (University of Tokyo)

  • Tian Liang

    (RIKEN Center for Emergent Matter Science (CEMS))

  • Ryutaro Yoshimi

    (RIKEN Center for Emergent Matter Science (CEMS))

  • Atsushi Tsukazaki

    (Tohoku University)

  • Kei S. Takahashi

    (RIKEN Center for Emergent Matter Science (CEMS))

  • Naoto Nagaosa

    (University of Tokyo
    RIKEN Center for Emergent Matter Science (CEMS))

  • Masashi Kawasaki

    (University of Tokyo
    RIKEN Center for Emergent Matter Science (CEMS))

  • Yoshinori Tokura

    (University of Tokyo
    RIKEN Center for Emergent Matter Science (CEMS)
    University of Tokyo)

Abstract

Topological superconductor is attracting growing interest for its potential application to topological quantum computation. The superconducting proximity effect on the topological insulator surface state is one promising way to yield topological superconductivity. The superconductivity realized at the interface between Bi2Te3 and non-superconductor FeTe is one such candidate. Here, to detect the mutual interaction between superconductivity and topological surface state, we investigate nonreciprocal transport; i.e., current-direction dependent resistance, which is sensitive to the broken inversion symmetry of the electronic state. The largely enhanced nonreciprocal phenomenon is detected in the Bi2Te3/FeTe heterostructure associated with the superconducting transition. The emergent nonreciprocal signal at low magnetic fields is attributed to the current-induced modulation of supercurrent density under the in-plane magnetic fields due to the spin-momentum locking. The angular dependence of the signal reveals the symmetry of superconductivity and indicates the existence of another mechanism of nonreciprocal transport at high fields.

Suggested Citation

  • Kenji Yasuda & Hironori Yasuda & Tian Liang & Ryutaro Yoshimi & Atsushi Tsukazaki & Kei S. Takahashi & Naoto Nagaosa & Masashi Kawasaki & Yoshinori Tokura, 2019. "Nonreciprocal charge transport at topological insulator/superconductor interface," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10658-3
    DOI: 10.1038/s41467-019-10658-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-10658-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-10658-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taras Golod & Vladimir M. Krasnov, 2022. "Demonstration of a superconducting diode-with-memory, operational at zero magnetic field with switchable nonreciprocity," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Yuki M. Itahashi & Toshiya Ideue & Shintaro Hoshino & Chihiro Goto & Hiromasa Namiki & Takao Sasagawa & Yoshihiro Iwasa, 2022. "Giant second harmonic transport under time-reversal symmetry in a trigonal superconductor," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Xu Zhang & Tongshuai Zhu & Shuai Zhang & Zhongqiang Chen & Anke Song & Chong Zhang & Rongzheng Gao & Wei Niu & Yequan Chen & Fucong Fei & Yilin Tai & Guoan Li & Binghui Ge & Wenkai Lou & Jie Shen & Ha, 2024. "Light-induced giant enhancement of nonreciprocal transport at KTaO3-based interfaces," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Zhaowei Zhang & Naizhou Wang & Ning Cao & Aifeng Wang & Xiaoyuan Zhou & Kenji Watanabe & Takashi Taniguchi & Binghai Yan & Wei-bo Gao, 2022. "Controlled large non-reciprocal charge transport in an intrinsic magnetic topological insulator MnBi2Te4," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    5. Fumiya Sekiguchi & Hideki Narita & Hideki Hirori & Teruo Ono & Yoshihiko Kanemitsu, 2024. "Anomalous behavior of critical current in a superconducting film triggered by DC plus terahertz current," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Lorenz Bauriedl & Christian Bäuml & Lorenz Fuchs & Christian Baumgartner & Nicolas Paulik & Jonas M. Bauer & Kai-Qiang Lin & John M. Lupton & Takashi Taniguchi & Kenji Watanabe & Christoph Strunk & Ni, 2022. "Supercurrent diode effect and magnetochiral anisotropy in few-layer NbSe2," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    7. James Jun He & Yukio Tanaka & Naoto Nagaosa, 2023. "The supercurrent diode effect and nonreciprocal paraconductivity due to the chiral structure of nanotubes," Nature Communications, Nature, vol. 14(1), pages 1-6, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10658-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.