IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41277-8.html
   My bibliography  Save this article

Discovery of a three-proton insertion mechanism in α-molybdenum trioxide leading to enhanced charge storage capacity

Author

Listed:
  • Yongjiu Lei

    (King Abdullah University of Science and Technology (KAUST))

  • Wenli Zhao

    (King Abdullah University of Science and Technology (KAUST))

  • Jun Yin

    (King Abdullah University of Science and Technology (KAUST)
    The Hong Kong Polytechnic University)

  • Yinchang Ma

    (King Abdullah University of Science and Technology (KAUST))

  • Zhiming Zhao

    (King Abdullah University of Science and Technology (KAUST))

  • Jian Yin

    (King Abdullah University of Science and Technology (KAUST))

  • Yusuf Khan

    (King Abdullah University of Science and Technology (KAUST))

  • Mohamed Nejib Hedhili

    (King Abdullah University of Science and Technology (KAUST))

  • Long Chen

    (King Abdullah University of Science and Technology (KAUST))

  • Qingxiao Wang

    (King Abdullah University of Science and Technology (KAUST))

  • Youyou Yuan

    (King Abdullah University of Science and Technology (KAUST))

  • Xixiang Zhang

    (King Abdullah University of Science and Technology (KAUST))

  • Osman M. Bakr

    (King Abdullah University of Science and Technology (KAUST))

  • Omar F. Mohammed

    (King Abdullah University of Science and Technology)

  • Husam N. Alshareef

    (King Abdullah University of Science and Technology (KAUST))

Abstract

The α-molybdenum trioxide has attracted much attention for proton storage owing to its easily modified bilayer structure, fast proton insertion kinetics, and high theoretical specific capacity. However, the fundamental science of the proton insertion mechanism in α-molybdenum trioxide has not been fully understood. Herein, we uncover a three-proton intercalation mechanism in α-molybdenum trioxide using a specially designed phosphoric acid based liquid crystalline electrolyte. The semiconductor-to-metal transition behavior and the expansion of the lattice interlayers of α-molybdenum trioxide after trapping one mole of protons are verified experimentally and theoretically. Further investigation of the morphology of α-molybdenum trioxide indicates its fracture behavior upon the proton intercalation process, which creates diffusion channels for hydronium ions. Notably, the observation of an additional redox behavior at low potential endows α-molybdenum trioxide with an improved specific discharge capacity of 362 mAh g−1.

Suggested Citation

  • Yongjiu Lei & Wenli Zhao & Jun Yin & Yinchang Ma & Zhiming Zhao & Jian Yin & Yusuf Khan & Mohamed Nejib Hedhili & Long Chen & Qingxiao Wang & Youyou Yuan & Xixiang Zhang & Osman M. Bakr & Omar F. Moha, 2023. "Discovery of a three-proton insertion mechanism in α-molybdenum trioxide leading to enhanced charge storage capacity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41277-8
    DOI: 10.1038/s41467-023-41277-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41277-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41277-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhengxin Zhu & Zaichun Liu & Yichen Yin & Yuan Yuan & Yahan Meng & Taoli Jiang & Qia Peng & Weiping Wang & Wei Chen, 2022. "Production of a hybrid capacitive storage device via hydrogen gas and carbon electrodes coupling," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Maria R. Lukatskaya & Sankalp Kota & Zifeng Lin & Meng-Qiang Zhao & Netanel Shpigel & Mikhael D. Levi & Joseph Halim & Pierre-Louis Taberna & Michel W. Barsoum & Patrice Simon & Yury Gogotsi, 2017. "Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides," Nature Energy, Nature, vol. 2(8), pages 1-6, August.
    3. Steven Chu & Arun Majumdar, 2012. "Opportunities and challenges for a sustainable energy future," Nature, Nature, vol. 488(7411), pages 294-303, August.
    4. Wei Chen & Guodong Li & Allen Pei & Yuzhang Li & Lei Liao & Hongxia Wang & Jiayu Wan & Zheng Liang & Guangxu Chen & Hao Zhang & Jiangyan Wang & Yi Cui, 2018. "A manganese–hydrogen battery with potential for grid-scale energy storage," Nature Energy, Nature, vol. 3(5), pages 428-435, May.
    5. Xianyong Wu & Jessica J. Hong & Woochul Shin & Lu Ma & Tongchao Liu & Xuanxuan Bi & Yifei Yuan & Yitong Qi & T. Wesley Surta & Wenxi Huang & Joerg Neuefeind & Tianpin Wu & P. Alex Greaney & Jun Lu & X, 2019. "Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries," Nature Energy, Nature, vol. 4(2), pages 123-130, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Donghoon Lee & You-Yeob Song & Angyin Wu & Jia Li & Jeonghun Yun & Dong-Hwa Seo & Seok Woo Lee, 2024. "Electrochemical kinetic energy harvesting mediated by ion solvation switching in two-immiscible liquid electrolyte," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Tiezhu Xu & Zhenming Xu & Tengyu Yao & Miaoran Zhang & Duo Chen & Xiaogang Zhang & Laifa Shen, 2023. "Discovery of fast and stable proton storage in bulk hexagonal molybdenum oxide," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Wang, Yubao & Huang, Xiaozhou & Huang, Zhendong, 2024. "Energy-related uncertainty and Chinese stock market returns," Finance Research Letters, Elsevier, vol. 62(PB).
    4. Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.
    5. Muhammad Habib Ur Rehman & Luigi Coppola & Ernestino Lufrano & Isabella Nicotera & Cataldo Simari, 2023. "Enhancing Water Retention, Transport, and Conductivity Performance in Fuel Cell Applications: Nafion-Based Nanocomposite Membranes with Organomodified Graphene Oxide Nanoplatelets," Energies, MDPI, vol. 16(23), pages 1-11, November.
    6. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    7. Mao, Guozhu & Zou, Hongyang & Chen, Guanyi & Du, Huibin & Zuo, Jian, 2015. "Past, current and future of biomass energy research: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1823-1833.
    8. Luo, Rongrong & Wang, Liuwei & Yu, Wei & Shao, Feilong & Shen, Haikuo & Xie, Huaqing, 2023. "High energy storage density titanium nitride-pentaerythritol solid–solid composite phase change materials for light-thermal-electric conversion," Applied Energy, Elsevier, vol. 331(C).
    9. Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
    10. Pandey, Mayank & Deshmukh, Kalim & Raman, Akhila & Asok, Aparna & Appukuttan, Saritha & Suman, G.R., 2024. "Prospects of MXene and graphene for energy storage and conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    11. Géremi Gilson Dranka & Paula Ferreira, 2020. "Electric Vehicles and Biofuels Synergies in the Brazilian Energy System," Energies, MDPI, vol. 13(17), pages 1-22, August.
    12. Yang, Jingluan & Chen, Wei, 2023. "Unravelling the landscape of global cobalt trade: Patterns, robustness, and supply chain security," Resources Policy, Elsevier, vol. 86(PB).
    13. Lili Zhang & Ning Zhang & Huishan Shang & Zhiyi Sun & Zihao Wei & Jingtao Wang & Yuanting Lei & Xiaochen Wang & Dan Wang & Yafei Zhao & Zhongti Sun & Fang Zhang & Xu Xiang & Bing Zhang & Wenxing Chen, 2024. "High-density asymmetric iron dual-atom sites for efficient and stable electrochemical water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    15. Li, Jinpeng & Chen, Xiangjie & Li, Guiqiang, 2023. "Effect of separation wavelength on a novel solar-driven hybrid hydrogen production system (SDHPS) by solar full spectrum energy," Renewable Energy, Elsevier, vol. 215(C).
    16. Sicong Wang & Changhai Qin & Yong Zhao & Jing Zhao & Yuping Han, 2023. "The Evolutionary Path of the Center of Gravity for Water Use, the Population, and the Economy, and Their Decomposed Contributions in China from 1965 to 2019," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    17. Cheng, Qian & Liu, Pan & Xia, Qian & Cheng, Lei & Ming, Bo & Zhang, Wei & Xu, Weifeng & Zheng, Yalian & Han, Dongyang & Xia, Jun, 2023. "An analytical method to evaluate curtailment of hydro–photovoltaic hybrid energy systems and its implication under climate change," Energy, Elsevier, vol. 278(C).
    18. Feng Zhou & Chunhui Wen, 2023. "Research on the Level of Agricultural Green Development, Regional Disparities, and Dynamic Distribution Evolution in China from the Perspective of Sustainable Development," Agriculture, MDPI, vol. 13(7), pages 1-47, July.
    19. Zhang, Kaiqiang & Jia, Na & Liu, Lirong, 2019. "CO2 storage in fractured nanopores underground: Phase behaviour study," Applied Energy, Elsevier, vol. 238(C), pages 911-928.
    20. Chen, Xinhui & Wei, Jianfeng & Sheng, Songwei & Wang, Wensheng & Wang, Kunlin & Zhang, Yaqun & Wang, Zhenpeng, 2023. "Design and experimental study of a novel type water-filled submerged flexible bag wave energy converter," Renewable Energy, Elsevier, vol. 218(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41277-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.