IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33868-8.html
   My bibliography  Save this article

Short hydrogen-bond network confined on COF surfaces enables ultrahigh proton conductivity

Author

Listed:
  • Benbing Shi

    (Tianjin University)

  • Xiao Pang

    (Tianjin University)

  • Shunning Li

    (Peking University Shenzhen Graduate School)

  • Hong Wu

    (Tianjin University
    Haihe Laboratory of Sustainable Chemical Transformations)

  • Jianliang Shen

    (Tianjin University)

  • Xiaoyao Wang

    (Tianjin University)

  • Chunyang Fan

    (Tianjin University)

  • Li Cao

    (Tianjin University)

  • Tianhao Zhu

    (Tianjin University)

  • Ming Qiu

    (Tianjin University)

  • Zhuoyu Yin

    (Tianjin University)

  • Yan Kong

    (Tianjin University)

  • Yiqin Liu

    (Tianjin University)

  • Mingzheng Zhang

    (Peking University Shenzhen Graduate School)

  • Yawei Liu

    (Chinese Academy of Sciences)

  • Feng Pan

    (Peking University Shenzhen Graduate School)

  • Zhongyi Jiang

    (Tianjin University
    Haihe Laboratory of Sustainable Chemical Transformations
    International Campus of Tianjin University, Binhai New City
    Zhejiang Institute of Tianjin University)

Abstract

The idea of spatial confinement has gained widespread interest in myriad applications. Especially, the confined short hydrogen-bond (SHB) network could afford an attractive opportunity to enable proton transfer in a nearly barrierless manner, but its practical implementation has been challenging. Herein, we report a SHB network confined on the surface of ionic covalent organic framework (COF) membranes decorated by densely and uniformly distributed hydrophilic ligands. Combined experimental and theoretical evidences have pointed to the confinement of water molecules allocated to each ligand, achieving the local enrichment of hydronium ions and the concomitant formation of SHBs in water-hydronium domains. These overlapped water-hydronium domains create an interconnected SHB network, which yields an unprecedented ultrahigh proton conductivity of 1389 mS cm−1 at 90 °C, 100% relative humidity.

Suggested Citation

  • Benbing Shi & Xiao Pang & Shunning Li & Hong Wu & Jianliang Shen & Xiaoyao Wang & Chunyang Fan & Li Cao & Tianhao Zhu & Ming Qiu & Zhuoyu Yin & Yan Kong & Yiqin Liu & Mingzheng Zhang & Yawei Liu & Fen, 2022. "Short hydrogen-bond network confined on COF surfaces enables ultrahigh proton conductivity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33868-8
    DOI: 10.1038/s41467-022-33868-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33868-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33868-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. Hu & M. Lozada-Hidalgo & F. C. Wang & A. Mishchenko & F. Schedin & R. R. Nair & E. W. Hill & D. W. Boukhvalov & M. I. Katsnelson & R. A. W. Dryfe & I. V. Grigorieva & H. A. Wu & A. K. Geim, 2014. "Proton transport through one-atom-thick crystals," Nature, Nature, vol. 516(7530), pages 227-230, December.
    2. Dominik Marx & Mark E. Tuckerman & Jürg Hutter & Michele Parrinello, 1999. "The nature of the hydrated excess proton in water," Nature, Nature, vol. 397(6720), pages 601-604, February.
    3. Jiyu Xu & Hongyu Jiang & Yutian Shen & Xin-Zheng Li & E. G. Wang & Sheng Meng, 2019. "Transparent proton transport through a two-dimensional nanomesh material," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    4. Fei Yu & Jing-Hao Ciou & Shaohua Chen & Wei Church Poh & Jian Chen & Juntong Chen & Kongcharoen Haruethai & Jian Lv & Dace Gao & Pooi See Lee, 2022. "Ionic covalent organic framework based electrolyte for fast-response ultra-low voltage electrochemical actuators," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Florian Garczarek & Klaus Gerwert, 2006. "Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy," Nature, Nature, vol. 439(7072), pages 109-112, January.
    6. Zhenyu Yang & Chunyang Yu & Junjie Ding & Lihua Chen & Huiyu Liu & Yangzhi Ye & Pan Li & Jiaolong Chen & Kim Jiayi Wu & Qiang-Yu Zhu & Yu-Quan Zhao & Xiaoning Liu & Xiaodong Zhuang & Shaodong Zhang, 2021. "A class of organic cages featuring twin cavities," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    7. Kui Jiao & Jin Xuan & Qing Du & Zhiming Bao & Biao Xie & Bowen Wang & Yan Zhao & Linhao Fan & Huizhi Wang & Zhongjun Hou & Sen Huo & Nigel P. Brandon & Yan Yin & Michael D. Guiver, 2021. "Designing the next generation of proton-exchange membrane fuel cells," Nature, Nature, vol. 595(7867), pages 361-369, July.
    8. Xianyong Wu & Jessica J. Hong & Woochul Shin & Lu Ma & Tongchao Liu & Xuanxuan Bi & Yifei Yuan & Yitong Qi & T. Wesley Surta & Wenxi Huang & Joerg Neuefeind & Tianpin Wu & P. Alex Greaney & Jun Lu & X, 2019. "Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries," Nature Energy, Nature, vol. 4(2), pages 123-130, February.
    9. Xiaolin Ge & Yubin He & Xian Liang & Liang Wu & Yuan Zhu & Zhengjin Yang & Min Hu & Tongwen Xu, 2018. "Thermally triggered polyrotaxane translational motion helps proton transfer," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhangcai Zhang & Lixin Liang & Jianze Feng & Guangjin Hou & Wencai Ren, 2024. "Significant enhancement of proton conductivity in solid acid at the monolayer limit," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Tianhao Zhu & Yan Kong & Bohui Lyu & Li Cao & Benbing Shi & Xiaoyao Wang & Xiao Pang & Chunyang Fan & Chao Yang & Hong Wu & Zhongyi Jiang, 2023. "3D covalent organic framework membrane with fast and selective ion transport," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Xue-Xin Li & Cai-Hong Li & Ming-Jun Hou & Bo Zhu & Wei-Chao Chen & Chun-Yi Sun & Ye Yuan & Wei Guan & Chao Qin & Kui-Zhan Shao & Xin-Long Wang & Zhong-Min Su, 2023. "Ce-mediated molecular tailoring on gigantic polyoxometalate {Mo132} into half-closed {Ce11Mo96} for high proton conduction," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhangcai Zhang & Lixin Liang & Jianze Feng & Guangjin Hou & Wencai Ren, 2024. "Significant enhancement of proton conductivity in solid acid at the monolayer limit," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Wei Liu & Jiage Yu & Tianshui Li & Shihang Li & Boyu Ding & Xinlong Guo & Aiqing Cao & Qihao Sha & Daojin Zhou & Yun Kuang & Xiaoming Sun, 2024. "Self-protecting CoFeAl-layered double hydroxides enable stable and efficient brine oxidation at 2 A cm−2," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Zhang, Yong & He, Shirong & Jiang, Xiaohui & Xiong, Mu & Ye, Yuntao & Yang, Xi, 2023. "Three-dimensional multi-phase simulation of proton exchange membrane fuel cell performance considering constriction straight channel," Energy, Elsevier, vol. 267(C).
    4. Jiadong Tang & Yun Wang & Hongyang Yang & Qianqian Zhang & Ce Wang & Leyuan Li & Zilong Zheng & Yuhong Jin & Hao Wang & Yifan Gu & Tieyong Zuo, 2024. "All-natural 2D nanofluidics as highly-efficient osmotic energy generators," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
    6. Florian N. Brünig & Manuel Rammler & Ellen M. Adams & Martina Havenith & Roland R. Netz, 2022. "Spectral signatures of excess-proton waiting and transfer-path dynamics in aqueous hydrochloric acid solutions," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Zhang, Xin & Li, Jingwen & Xiong, Yi & Ang, Yee Sin, 2022. "Efficient harvesting of low-grade waste heat from proton exchange membrane fuel cells via thermoradiative power devices," Energy, Elsevier, vol. 258(C).
    8. Lu, Guolong & Fan, Wenxuan & Lu, Dafeng & Zhao, Taotao & Wu, Qianqian & Liu, Mingxin & Liu, Zhenning, 2024. "Lung-inspired hybrid flow field to enhance PEMFC performance: A case of dual optimization by response surface and artificial intelligence," Applied Energy, Elsevier, vol. 355(C).
    9. Yunjie Yang & Minli Bai & Laisuo Su & Jizu Lv & Chengzhi Hu & Linsong Gao & Yang Li & Yubai Li & Yongchen Song, 2022. "One-Dimensional Numerical Simulation of Pt-Co Alloy Catalyst Aging for Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 14(18), pages 1-23, September.
    10. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    11. Venkatesan, Suriya & Mitzel, Jens & Wegner, Karsten & Costa, Remi & Gazdzicki, Pawel & Friedrich, Kaspar Andreas, 2022. "Nanomaterials and films for polymer electrolyte membrane fuel cells and solid oxide cells by flame spray pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    12. Wang, Mingkai & Pei, Pucheng & Xu, Yiming & Fan, Tengbo & Ren, Peng & Zhu, Zijing & Chen, Dongfang & Fu, Xi & Song, Xin & Wang, He, 2024. "CO-tolerance behaviors of proton exchange membrane fuel cell stacks with impure hydrogen fuel," Applied Energy, Elsevier, vol. 366(C).
    13. Su, Chao & Chen, Zhidong & Wu, Zexuan & Zhang, Jing & Li, Kaiyang & Hao, Junhong & Kong, Yanqiang & Zhang, Naiqiang, 2024. "Experimental and numerical study of thermal coupling on catalyst-coated membrane for proton exchange membrane water electrolyzer," Applied Energy, Elsevier, vol. 357(C).
    14. Yao, Jing & Wu, Zhen & Wang, Huan & Yang, Fusheng & Xuan, Jin & Xing, Lei & Ren, Jianwei & Zhang, Zaoxiao, 2022. "Design and multi-objective optimization of low-temperature proton exchange membrane fuel cells with efficient water recovery and high electrochemical performance," Applied Energy, Elsevier, vol. 324(C).
    15. Chen, Zhijie & Zuo, Wei & Zhou, Kun & Li, Qingqing & Huang, Yuhan & E, Jiaqiang, 2023. "Multi-factor impact mechanism on the performance of high temperature proton exchange membrane fuel cell," Energy, Elsevier, vol. 278(PB).
    16. Ben Niu & Wenxuan Jiang & Bo Jiang & Mengqi Lv & Sa Wang & Wei Wang, 2022. "Determining the depth of surface charging layer of single Prussian blue nanoparticles with pseudocapacitive behaviors," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Tao, Jianjian & Zhang, Yihan & Wei, Xuezhe & Jiang, Shangfeng & Dai, Haifeng, 2024. "Optimization of fast cold start strategy for PEM fuel cell stack," Applied Energy, Elsevier, vol. 362(C).
    18. Zhihua Zhou & Yongtao Tan & Qian Yang & Achintya Bera & Zecheng Xiong & Mehmet Yagmurcukardes & Minsoo Kim & Yichao Zou & Guanghua Wang & Artem Mishchenko & Ivan Timokhin & Canbin Wang & Hao Wang & Ch, 2022. "Gas permeation through graphdiyne-based nanoporous membranes," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    19. Zhen Wang & Qing-Pu Zhang & Fei Guo & Hui Ma & Zi-Hui Liang & Chang-Hai Yi & Chun Zhang & Chuan-Feng Chen, 2024. "Self-similar chiral organic molecular cages," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Förster, Robert & Kaiser, Matthias & Wenninger, Simon, 2023. "Future vehicle energy supply - sustainable design and operation of hybrid hydrogen and electric microgrids," Applied Energy, Elsevier, vol. 334(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33868-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.