IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-22698-9.html
   My bibliography  Save this article

Proton-assisted calcium-ion storage in aromatic organic molecular crystal with coplanar stacked structure

Author

Listed:
  • Cuiping Han

    (City University of Hong Kong, Kowloon)

  • Hongfei Li

    (Songshan Lake Materials Laboratory)

  • Yu Li

    (Shenzhen University
    Shenzhen University)

  • Jiaxiong Zhu

    (Songshan Lake Materials Laboratory)

  • Chunyi Zhi

    (City University of Hong Kong, Kowloon)

Abstract

Rechargeable calcium-ion batteries are intriguing alternatives for use as post-lithium-ion batteries. However, the high charge density of divalent Ca2+ establishes a strong electrostatic interaction with the hosting lattice, which results in low-capacity Ca-ion storage. The ionic radius of Ca2+ further leads to sluggish ionic diffusion, hindering high-rate capability performances. Here, we report 5,7,12,14-pentacenetetrone (PT) as an organic crystal electrode active material for aqueous Ca-ion storage. The weak π-π stacked layers of the PT molecules render a flexible and robust structure suitable for Ca-ion storage. In addition, the channels within the PT crystal provide efficient pathways for fast ionic diffusion. The PT anode exhibits large specific capacity (150.5 mAh g-1 at 5 A g-1), high-rate capability (86.1 mAh g-1 at 100 A g-1) and favorable low-temperature performances. A mechanistic study identifies proton-assisted uptake/removal of Ca2+ in PT during cycling. First principle calculations suggest that the Ca ions tend to stay in the interstitial space of the PT channels and are stabilized by carbonyls from adjacent PT molecules. Finally, pairing with a high-voltage positive electrode, a full aqueous Ca-ion cell is assembled and tested.

Suggested Citation

  • Cuiping Han & Hongfei Li & Yu Li & Jiaxiong Zhu & Chunyi Zhi, 2021. "Proton-assisted calcium-ion storage in aromatic organic molecular crystal with coplanar stacked structure," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22698-9
    DOI: 10.1038/s41467-021-22698-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-22698-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-22698-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Songshan Bi & Shuai Wang & Fang Yue & Zhiwei Tie & Zhiqiang Niu, 2021. "A rechargeable aqueous manganese-ion battery based on intercalation chemistry," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Haiming Lv & Zhiquan Wei & Cuiping Han & Xiaolong Yang & Zijie Tang & Yantu Zhang & Chunyi Zhi & Hongfei Li, 2023. "Cross-linked polyaniline for production of long lifespan aqueous iron||organic batteries with electrochromic properties," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Zishuai Zhang & Yilong Zhu & Miao Yu & Yan Jiao & Yan Huang, 2022. "Development of long lifespan high-energy aqueous organic||iodine rechargeable batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22698-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.