IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49195-z.html
   My bibliography  Save this article

Self-protecting CoFeAl-layered double hydroxides enable stable and efficient brine oxidation at 2 A cm−2

Author

Listed:
  • Wei Liu

    (Beijing University of Chemical Technology)

  • Jiage Yu

    (Beijing University of Chemical Technology)

  • Tianshui Li

    (Beijing University of Chemical Technology)

  • Shihang Li

    (Beijing University of Chemical Technology)

  • Boyu Ding

    (Beijing University of Chemical Technology)

  • Xinlong Guo

    (Beijing University of Chemical Technology)

  • Aiqing Cao

    (Beijing University of Chemical Technology)

  • Qihao Sha

    (Beijing University of Chemical Technology)

  • Daojin Zhou

    (Beijing University of Chemical Technology)

  • Yun Kuang

    (Research Institute of Tsinghua University in Shenzhen)

  • Xiaoming Sun

    (Beijing University of Chemical Technology)

Abstract

Low-energy consumption seawater electrolysis at high current density is an effective way for hydrogen production, however the continuous feeding of seawater may result in the accumulation of Cl−, leading to severe anode poisoning and corrosion, thereby compromising the activity and stability. Herein, CoFeAl layered double hydroxide anodes with excellent oxygen evolution reaction activity are synthesized and delivered stable catalytic performance for 350 hours at 2 A cm−2 in the presence of 6-fold concentrated seawater. Comprehensive analysis reveals that the Al3+ ions in electrode are etched off by OH− during oxygen evolution reaction process, resulting in M3+ vacancies that boost oxygen evolution reaction activity. Additionally, the self-originated Al(OH)n− is found to adsorb on the anode surface to improve stability. An electrode assembly based on a micropore membrane and CoFeAl layered double hydroxide electrodes operates continuously for 500 hours at 1 A cm−2, demonstrating their feasibility in brine electrolysis.

Suggested Citation

  • Wei Liu & Jiage Yu & Tianshui Li & Shihang Li & Boyu Ding & Xinlong Guo & Aiqing Cao & Qihao Sha & Daojin Zhou & Yun Kuang & Xiaoming Sun, 2024. "Self-protecting CoFeAl-layered double hydroxides enable stable and efficient brine oxidation at 2 A cm−2," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49195-z
    DOI: 10.1038/s41467-024-49195-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49195-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49195-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jiaxin Guo & Yao Zheng & Zhenpeng Hu & Caiyan Zheng & Jing Mao & Kun Du & Mietek Jaroniec & Shi-Zhang Qiao & Tao Ling, 2023. "Direct seawater electrolysis by adjusting the local reaction environment of a catalyst," Nature Energy, Nature, vol. 8(3), pages 264-272, March.
    2. Jiyu Xu & Hongyu Jiang & Yutian Shen & Xin-Zheng Li & E. G. Wang & Sheng Meng, 2019. "Transparent proton transport through a two-dimensional nanomesh material," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    3. Heping Xie & Zhiyu Zhao & Tao Liu & Yifan Wu & Cheng Lan & Wenchuan Jiang & Liangyu Zhu & Yunpeng Wang & Dongsheng Yang & Zongping Shao, 2022. "A membrane-based seawater electrolyser for hydrogen generation," Nature, Nature, vol. 612(7941), pages 673-678, December.
    4. Sixie Zhang & Yunan Wang & Shuyu Li & Zhongfeng Wang & Haocheng Chen & Li Yi & Xu Chen & Qihao Yang & Wenwen Xu & Aiying Wang & Zhiyi Lu, 2023. "Concerning the stability of seawater electrolysis: a corrosion mechanism study of halide on Ni-based anode," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Wenming Tong & Mark Forster & Fabio Dionigi & Sören Dresp & Roghayeh Sadeghi Erami & Peter Strasser & Alexander J. Cowan & Pau Farràs, 2020. "Electrolysis of low-grade and saline surface water," Nature Energy, Nature, vol. 5(5), pages 367-377, May.
    6. Hao Shi & Tanyuan Wang & Jianyun Liu & Weiwei Chen & Shenzhou Li & Jiashun Liang & Shuxia Liu & Xuan Liu & Zhao Cai & Chao Wang & Dong Su & Yunhui Huang & Lior Elbaz & Qing Li, 2023. "A sodium-ion-conducted asymmetric electrolyzer to lower the operation voltage for direct seawater electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Xianyong Wu & Jessica J. Hong & Woochul Shin & Lu Ma & Tongchao Liu & Xuanxuan Bi & Yifei Yuan & Yitong Qi & T. Wesley Surta & Wenxi Huang & Joerg Neuefeind & Tianpin Wu & P. Alex Greaney & Jun Lu & X, 2019. "Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries," Nature Energy, Nature, vol. 4(2), pages 123-130, February.
    8. Xin Kang & Fengning Yang & Zhiyuan Zhang & Heming Liu & Shiyu Ge & Shuqi Hu & Shaohai Li & Yuting Luo & Qiangmin Yu & Zhibo Liu & Qiang Wang & Wencai Ren & Chenghua Sun & Hui-Ming Cheng & Bilu Liu, 2023. "A corrosion-resistant RuMoNi catalyst for efficient and long-lasting seawater oxidation and anion exchange membrane electrolyzer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Liang & Zhengwei Cai & Zixiao Li & Yongchao Yao & Yongsong Luo & Shengjun Sun & Dongdong Zheng & Qian Liu & Xuping Sun & Bo Tang, 2024. "Efficient bubble/precipitate traffic enables stable seawater reduction electrocatalysis at industrial-level current densities," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Mengjun Xiao & Qianbao Wu & Ruiqi Ku & Liujiang Zhou & Chang Long & Junwu Liang & Andraž Mavrič & Lei Li & Jing Zhu & Matjaz Valant & Jiong Li & Zhenhua Zeng & Chunhua Cui, 2023. "Self-adaptive amorphous CoOxCly electrocatalyst for sustainable chlorine evolution in acidic brine," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Sixie Zhang & Yunan Wang & Shuyu Li & Zhongfeng Wang & Haocheng Chen & Li Yi & Xu Chen & Qihao Yang & Wenwen Xu & Aiying Wang & Zhiyi Lu, 2023. "Concerning the stability of seawater electrolysis: a corrosion mechanism study of halide on Ni-based anode," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Xin Kang & Fengning Yang & Zhiyuan Zhang & Heming Liu & Shiyu Ge & Shuqi Hu & Shaohai Li & Yuting Luo & Qiangmin Yu & Zhibo Liu & Qiang Wang & Wencai Ren & Chenghua Sun & Hui-Ming Cheng & Bilu Liu, 2023. "A corrosion-resistant RuMoNi catalyst for efficient and long-lasting seawater oxidation and anion exchange membrane electrolyzer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Zhengwei Cai & Jie Liang & Zixiao Li & Tingyu Yan & Chaoxin Yang & Shengjun Sun & Meng Yue & Xuwei Liu & Ting Xie & Yan Wang & Tingshuai Li & Yongsong Luo & Dongdong Zheng & Qian Liu & Jingxiang Zhao , 2024. "Stabilizing NiFe sites by high-dispersity of nanosized and anionic Cr species toward durable seawater oxidation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Tao Liu & Cheng Lan & Min Tang & Mengxin Li & Yitao Xu & Hangrui Yang & Qingyue Deng & Wenchuan Jiang & Zhiyu Zhao & Yifan Wu & Heping Xie, 2024. "Redox-mediated decoupled seawater direct splitting for H2 production," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Tao Liu & Zhiyu Zhao & Wenbin Tang & Yi Chen & Cheng Lan & Liangyu Zhu & Wenchuan Jiang & Yifan Wu & Yunpeng Wang & Zezhou Yang & Dongsheng Yang & Qijun Wang & Lunbo Luo & Taisheng Liu & Heping Xie, 2024. "In-situ direct seawater electrolysis using floating platform in ocean with uncontrollable wave motion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Hao Shi & Tanyuan Wang & Jianyun Liu & Weiwei Chen & Shenzhou Li & Jiashun Liang & Shuxia Liu & Xuan Liu & Zhao Cai & Chao Wang & Dong Su & Yunhui Huang & Lior Elbaz & Qing Li, 2023. "A sodium-ion-conducted asymmetric electrolyzer to lower the operation voltage for direct seawater electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Chenhui Zhou & Jia Shi & Zhaoqi Dong & Lingyou Zeng & Yan Chen & Ying Han & Lu Li & Wenyu Zhang & Qinghua Zhang & Lin Gu & Fan Lv & Mingchuan Luo & Shaojun Guo, 2024. "Oxophilic gallium single atoms bridged ruthenium clusters for practical anion-exchange membrane electrolyzer," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Thomas Adisorn & Maike Venjakob & Julia Pössinger & Sibel Raquel Ersoy & Oliver Wagner & Raphael Moser, 2023. "Implications of the Interrelations between the (Waste)Water Sector and Hydrogen Production for Arid Countries Using the Example of Jordan," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    11. Benbing Shi & Xiao Pang & Shunning Li & Hong Wu & Jianliang Shen & Xiaoyao Wang & Chunyang Fan & Li Cao & Tianhao Zhu & Ming Qiu & Zhuoyu Yin & Yan Kong & Yiqin Liu & Mingzheng Zhang & Yawei Liu & Fen, 2022. "Short hydrogen-bond network confined on COF surfaces enables ultrahigh proton conductivity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Fei Lv & Jiazhe Wu & Xuan Liu & Zhihao Zheng & Lixia Pan & Xuewen Zheng & Liejin Guo & Yubin Chen, 2024. "Decoupled electrolysis for hydrogen production and hydrazine oxidation via high-capacity and stable pre-protonated vanadium hexacyanoferrate," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Andreas von Döllen & YoungSeok Hwang & Stephan Schlüter, 2021. "The Future Is Colorful—An Analysis of the CO 2 Bow Wave and Why Green Hydrogen Cannot Do It Alone," Energies, MDPI, vol. 14(18), pages 1-20, September.
    14. Jiadong Tang & Yun Wang & Hongyang Yang & Qianqian Zhang & Ce Wang & Leyuan Li & Zilong Zheng & Yuhong Jin & Hao Wang & Yifan Gu & Tieyong Zuo, 2024. "All-natural 2D nanofluidics as highly-efficient osmotic energy generators," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Yu Shen & Xiao-Long Zhang & Ming-Rong Qu & Jie Ma & Sheng Zhu & Yu-Lin Min & Min-Rui Gao & Shu-Hong Yu, 2024. "Cr dopant mediates hydroxyl spillover on RuO2 for high-efficiency proton exchange membrane electrolysis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Ghouri, Zafar Khan & Elsaid, Khaled & Mahmoud Nasef, Mohamed & Badreldin, Ahmed & Wubulikasimu, Yiming & Abdel-Wahab, Ahmed, 2022. "Incorporation of manganese carbonyl sulfide ((Mn2S2 (CO)7) and mixed metal oxides-decorated reduced graphene oxide (MnFeCoO4/rGO) as a selective anode toward efficient OER from seawater splitting unde," Renewable Energy, Elsevier, vol. 190(C), pages 1029-1040.
    17. Ben Niu & Wenxuan Jiang & Bo Jiang & Mengqi Lv & Sa Wang & Wei Wang, 2022. "Determining the depth of surface charging layer of single Prussian blue nanoparticles with pseudocapacitive behaviors," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Corinna Köpke & Jennifer Mielniczek & Alexander Stolz, 2023. "Testing Resilience Aspects of Operation Options for Offshore Wind Farms beyond the End-of-Life," Energies, MDPI, vol. 16(12), pages 1-12, June.
    19. Haiming Lv & Zhiquan Wei & Cuiping Han & Xiaolong Yang & Zijie Tang & Yantu Zhang & Chunyi Zhi & Hongfei Li, 2023. "Cross-linked polyaniline for production of long lifespan aqueous iron||organic batteries with electrochromic properties," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Yuzhen Chen & Qiuhong Li & Yuxing Lin & Jiao Liu & Jing Pan & Jingguo Hu & Xiaoyong Xu, 2024. "Boosting oxygen evolution reaction by FeNi hydroxide-organic framework electrocatalyst toward alkaline water electrolyzer," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49195-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.