IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38540-3.html
   My bibliography  Save this article

Witnessing light-driven entanglement using time-resolved resonant inelastic X-ray scattering

Author

Listed:
  • Jordyn Hales

    (Clemson University)

  • Utkarsh Bajpai

    (Clemson University)

  • Tongtong Liu

    (Massachusetts Institute of Technology)

  • Denitsa R. Baykusheva

    (Harvard University)

  • Mingda Li

    (Massachusetts Institute of Technology)

  • Matteo Mitrano

    (Harvard University)

  • Yao Wang

    (Clemson University)

Abstract

Characterizing and controlling entanglement in quantum materials is crucial for the development of next-generation quantum technologies. However, defining a quantifiable figure of merit for entanglement in macroscopic solids is theoretically and experimentally challenging. At equilibrium the presence of entanglement can be diagnosed by extracting entanglement witnesses from spectroscopic observables and a nonequilibrium extension of this method could lead to the discovery of novel dynamical phenomena. Here, we propose a systematic approach to quantify the time-dependent quantum Fisher information and entanglement depth of transient states of quantum materials with time-resolved resonant inelastic x-ray scattering. Using a quarter-filled extended Hubbard model as an example, we benchmark the efficiency of this approach and predict a light-enhanced many-body entanglement due to the proximity to a phase boundary. Our work sets the stage for experimentally witnessing and controlling entanglement in light-driven quantum materials via ultrafast spectroscopic measurements.

Suggested Citation

  • Jordyn Hales & Utkarsh Bajpai & Tongtong Liu & Denitsa R. Baykusheva & Mingda Li & Matteo Mitrano & Yao Wang, 2023. "Witnessing light-driven entanglement using time-resolved resonant inelastic X-ray scattering," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38540-3
    DOI: 10.1038/s41467-023-38540-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38540-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38540-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joannis Koepsell & Jayadev Vijayan & Pimonpan Sompet & Fabian Grusdt & Timon A. Hilker & Eugene Demler & Guillaume Salomon & Immanuel Bloch & Christian Gross, 2019. "Imaging magnetic polarons in the doped Fermi–Hubbard model," Nature, Nature, vol. 572(7769), pages 358-362, August.
    2. J. H. Mentink & K. Balzer & M. Eckstein, 2015. "Ultrafast and reversible control of the exchange interaction in Mott insulators," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    3. Guillaume Salomon & Joannis Koepsell & Jayadev Vijayan & Timon A. Hilker & Jacopo Nespolo & Lode Pollet & Immanuel Bloch & Christian Gross, 2019. "Author Correction: Direct observation of incommensurate magnetism in Hubbard chains," Nature, Nature, vol. 566(7743), pages 5-5, February.
    4. Guillaume Salomon & Joannis Koepsell & Jayadev Vijayan & Timon A. Hilker & Jacopo Nespolo & Lode Pollet & Immanuel Bloch & Christian Gross, 2019. "Direct observation of incommensurate magnetism in Hubbard chains," Nature, Nature, vol. 565(7737), pages 56-60, January.
    5. Shengshi Pang & Andrew N. Jordan, 2017. "Optimal adaptive control for quantum metrology with time-dependent Hamiltonians," Nature Communications, Nature, vol. 8(1), pages 1-9, April.
    6. C. Gross & T. Zibold & E. Nicklas & J. Estève & M. K. Oberthaler, 2010. "Nonlinear atom interferometer surpasses classical precision limit," Nature, Nature, vol. 464(7292), pages 1165-1169, April.
    7. Yu Xu & Hongtao Rong & Qingyan Wang & Dingsong Wu & Yong Hu & Yongqing Cai & Qiang Gao & Hongtao Yan & Cong Li & Chaohui Yin & Hao Chen & Jianwei Huang & Zhihai Zhu & Yuan Huang & Guodong Liu & Zuyan , 2021. "Spectroscopic evidence of superconductivity pairing at 83 K in single-layer FeSe/SrTiO3 films," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    8. Leon Balents, 2010. "Spin liquids in frustrated magnets," Nature, Nature, vol. 464(7286), pages 199-208, March.
    9. C. J. Jia & E. A. Nowadnick & K. Wohlfeld & Y. F. Kung & C.-C. Chen & S. Johnston & T. Tohyama & B. Moritz & T. P. Devereaux, 2014. "Persistent spin excitations in doped antiferromagnets revealed by resonant inelastic light scattering," Nature Communications, Nature, vol. 5(1), pages 1-7, May.
    10. J. Schlappa & K. Wohlfeld & K. J. Zhou & M. Mourigal & M. W. Haverkort & V. N. Strocov & L. Hozoi & C. Monney & S. Nishimoto & S. Singh & A. Revcolevschi & J.-S. Caux & L. Patthey & H. M. Rønnow & J. , 2012. "Spin–orbital separation in the quasi-one-dimensional Mott insulator Sr2CuO3," Nature, Nature, vol. 485(7396), pages 82-85, May.
    11. Thomas Schweigler & Valentin Kasper & Sebastian Erne & Igor Mazets & Bernhard Rauer & Federica Cataldini & Tim Langen & Thomas Gasenzer & Jürgen Berges & Jörg Schmiedmayer, 2017. "Experimental characterization of a quantum many-body system via higher-order correlations," Nature, Nature, vol. 545(7654), pages 323-326, May.
    12. J. Estève & C. Gross & A. Weller & S. Giovanazzi & M. K. Oberthaler, 2008. "Squeezing and entanglement in a Bose–Einstein condensate," Nature, Nature, vol. 455(7217), pages 1216-1219, October.
    13. Vlatko Vedral, 2008. "Quantifying entanglement in macroscopic systems," Nature, Nature, vol. 453(7198), pages 1004-1007, June.
    14. Rajibul Islam & Ruichao Ma & Philipp M. Preiss & M. Eric Tai & Alexander Lukin & Matthew Rispoli & Markus Greiner, 2015. "Measuring entanglement entropy in a quantum many-body system," Nature, Nature, vol. 528(7580), pages 77-83, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Carli & Christopher Parsonage & Arthur Rooij & Lennart Koehn & Clemens Ulm & Callum W. Duncan & Andrew J. Daley & Elmar Haller & Stefan Kuhr, 2024. "Commensurate and incommensurate 1D interacting quantum systems," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. A. Singh & H. Y. Huang & J. D. Xie & J. Okamoto & C. T. Chen & T. Watanabe & A. Fujimori & M. Imada & D. J. Huang, 2022. "Unconventional exciton evolution from the pseudogap to superconducting phases in cuprates," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Shingo Toyoda & Manfred Fiebig & Lea Forster & Taka-hisa Arima & Yoshinori Tokura & Naoki Ogawa, 2021. "Writing of strain-controlled multiferroic ribbons into MnWO4," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    4. Tong Liu & Shang Liu & Hekang Li & Hao Li & Kaixuan Huang & Zhongcheng Xiang & Xiaohui Song & Kai Xu & Dongning Zheng & Heng Fan, 2023. "Observation of entanglement transition of pseudo-random mixed states," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    5. Bin Gao & Tong Chen & Xiao-Chuan Wu & Michael Flynn & Chunruo Duan & Lebing Chen & Chien-Lung Huang & Jesse Liebman & Shuyi Li & Feng Ye & Matthew B. Stone & Andrey Podlesnyak & Douglas L. Abernathy &, 2023. "Diffusive excitonic bands from frustrated triangular sublattice in a singlet-ground-state system," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Peizhi Mai & Nathan S. Nichols & Seher Karakuzu & Feng Bao & Adrian Del Maestro & Thomas A. Maier & Steven Johnston, 2023. "Robust charge-density-wave correlations in the electron-doped single-band Hubbard model," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    7. Tao Hong & Tao Ying & Qing Huang & Sachith E. Dissanayake & Yiming Qiu & Mark M. Turnbull & Andrey A. Podlesnyak & Yan Wu & Huibo Cao & Yaohua Liu & Izuru Umehara & Jun Gouchi & Yoshiya Uwatoko & Masa, 2022. "Evidence for pressure induced unconventional quantum criticality in the coupled spin ladder antiferromagnet C9H18N2CuBr4," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Canella, G.A. & França, V.V., 2020. "Entanglement in disordered superfluids: The impact of density, interaction and harmonic confinement on the Superconductor–Insulator transition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    9. F. H. B. Somhorst & R. Meer & M. Correa Anguita & R. Schadow & H. J. Snijders & M. Goede & B. Kassenberg & P. Venderbosch & C. Taballione & J. P. Epping & H. H. Vlekkert & J. Timmerhuis & J. F. F. Bul, 2023. "Quantum simulation of thermodynamics in an integrated quantum photonic processor," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Xiaohu Zheng & Zheng-Xin Liu & Cuiwei Zhang & Huaxue Zhou & Chongli Yang & Youguo Shi & Katsumi Tanigaki & Rui-Rui Du, 2024. "Incommensurate charge super-modulation and hidden dipole order in layered kitaev material α-RuCl3," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    11. Han Li & Enze Lv & Ning Xi & Yuan Gao & Yang Qi & Wei Li & Gang Su, 2024. "Magnetocaloric effect of topological excitations in Kitaev magnets," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Ying Xiang & Qing Li & Yongkai Li & Wei Xie & Huan Yang & Zhiwei Wang & Yugui Yao & Hai-Hu Wen, 2021. "Twofold symmetry of c-axis resistivity in topological kagome superconductor CsV3Sb5 with in-plane rotating magnetic field," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    13. Q. Stahl & T. Ritschel & G. Garbarino & F. Cova & A. Isaeva & T. Doert & J. Geck, 2024. "Pressure-tuning of α-RuCl3 towards a quantum spin liquid," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    14. Schmidt, M. & Zimmer, F.M. & Magalhaes, S.G., 2015. "Spin glass induced by infinitesimal disorder in geometrically frustrated kagome lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 416-423.
    15. Koh, C.Y. & Kwek, L.C., 2015. "Entanglement witness for spin glass," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 324-330.
    16. Youngsu Choi & Suheon Lee & Je-Ho Lee & Seungyeol Lee & Maeng-Je Seong & Kwang-Yong Choi, 2021. "Bosonic spinons in anisotropic triangular antiferromagnets," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    17. Jonas Meinel & Vadim Vorobyov & Ping Wang & Boris Yavkin & Mathias Pfender & Hitoshi Sumiya & Shinobu Onoda & Junichi Isoya & Ren-Bao Liu & J. Wrachtrup, 2022. "Quantum nonlinear spectroscopy of single nuclear spins," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Alejandro Lopez-Bezanilla & Jack Raymond & Kelly Boothby & Juan Carrasquilla & Cristiano Nisoli & Andrew D. King, 2023. "Kagome qubit ice," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Jiang, Xunda & Zeng, Yue & Ji, Yikai & Liu, Bin & Qin, Xizhou & Li, Yongyao, 2022. "Vortex formation and quench dynamics of rotating quantum droplets," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    20. A. Pustogow & Y. Kawasugi & H. Sakurakoji & N. Tajima, 2023. "Chasing the spin gap through the phase diagram of a frustrated Mott insulator," Nature Communications, Nature, vol. 14(1), pages 1-6, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38540-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.