IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v161y2022ics0960077922005781.html
   My bibliography  Save this article

Vortex formation and quench dynamics of rotating quantum droplets

Author

Listed:
  • Jiang, Xunda
  • Zeng, Yue
  • Ji, Yikai
  • Liu, Bin
  • Qin, Xizhou
  • Li, Yongyao

Abstract

We investigate vortex formation and quench dynamics in rotating quantum droplets. We use the variational method to analytically show that vortex formation requires the breakdown of the rotational symmetry of the system via shape deformations and calculate the bifurcation point and lowest energy surface mode of the system. In our numerical simulations, we first demonstrate the systematic stationary vortex states and their critical points with the imaginary time propagation method, in which the average angular momentum acts as the convergence condition of the final state, we also show that the critical points for vortex formation via simulation are consistent with variational results. Then, we present two methods for generating vortex states via the real-time quench dynamics with symmetric and asymmetric rotating quantum droplet traps, by choosing different quench times and rotation strengths, one obtains the final states with arbitrary vortices. Our study provides a dynamic method for experimentally investigating vortex formation in rotating quantum droplets.

Suggested Citation

  • Jiang, Xunda & Zeng, Yue & Ji, Yikai & Liu, Bin & Qin, Xizhou & Li, Yongyao, 2022. "Vortex formation and quench dynamics of rotating quantum droplets," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
  • Handle: RePEc:eee:chsofr:v:161:y:2022:i:c:s0960077922005781
    DOI: 10.1016/j.chaos.2022.112368
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922005781
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112368?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Fei-yan & Yan, Zi-teng & Cai, Xiao-yan & Li, Chao-long & Chen, Gui-lian & He, He-xiang & Liu, Bin & Li, Yong-yao, 2021. "Discrete quantum droplets in one-dimensional optical lattices," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. D. A. Butts & D. S. Rokhsar, 1999. "Predicted signatures of rotating Bose–Einstein condensates," Nature, Nature, vol. 397(6717), pages 327-329, January.
    3. A. Sørensen & L.-M. Duan & J. I. Cirac & P. Zoller, 2001. "Many-particle entanglement with Bose–Einstein condensates," Nature, Nature, vol. 409(6816), pages 63-66, January.
    4. Markus Greiner & Olaf Mandel & Tilman Esslinger & Theodor W. Hänsch & Immanuel Bloch, 2002. "Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms," Nature, Nature, vol. 415(6867), pages 39-44, January.
    5. C. Gross & T. Zibold & E. Nicklas & J. Estève & M. K. Oberthaler, 2010. "Nonlinear atom interferometer surpasses classical precision limit," Nature, Nature, vol. 464(7292), pages 1165-1169, April.
    6. Julian Léonard & Andrea Morales & Philip Zupancic & Tilman Esslinger & Tobias Donner, 2017. "Supersolid formation in a quantum gas breaking a continuous translational symmetry," Nature, Nature, vol. 543(7643), pages 87-90, March.
    7. Matthias Schmitt & Matthias Wenzel & Fabian Böttcher & Igor Ferrier-Barbut & Tilman Pfau, 2016. "Self-bound droplets of a dilute magnetic quantum liquid," Nature, Nature, vol. 539(7628), pages 259-262, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Liangwei & Fan, Mingjing & Malomed, Boris A., 2024. "Stable higher-order vortex quantum droplets in an annular potential," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    2. Huang, Hao & Wang, Hongcheng & Chen, Guihua & Chen, Manna & Lim, Chin Seong & Wong, Kok-Cheong, 2023. "Stable quantum droplets with higher-order vortex in radial lattices," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Hao & Wang, Hongcheng & Chen, Manna & Lim, Chin Seong & Wong, Kok-Cheong, 2022. "Binary-vortex quantum droplets," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    2. Kartashov, Yaroslav V. & Zezyulin, Dmitry A., 2024. "Enhanced mobility of quantum droplets in periodic lattices," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    3. J. Sánchez-Baena & C. Politi & F. Maucher & F. Ferlaino & T. Pohl, 2023. "Heating a dipolar quantum fluid into a solid," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    4. Dong, Liangwei & Fan, Mingjing & Malomed, Boris A., 2024. "Stable higher-order vortex quantum droplets in an annular potential," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    5. Rizzatti, Eduardo Osório & Gomes Filho, Márcio Sampaio & Malard, Mariana & Barbosa, Marco Aurélio A., 2019. "Waterlike anomalies in the Bose–Hubbard model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 323-330.
    6. Meng, Hongjuan & Zhou, Yushan & Li, Xiaolin & Ren, Xueping & Wan, Xiaohuan & Zhou, Zhikun & Wang, Wenyuan & Shi, Yuren, 2021. "Gap solitons in Bose–Einstein condensate loaded in a honeycomb optical lattice: Nonlinear dynamical stability, tunneling, and self-trapping," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 577(C).
    7. Zhao, Fei-yan & Yan, Zi-teng & Cai, Xiao-yan & Li, Chao-long & Chen, Gui-lian & He, He-xiang & Liu, Bin & Li, Yong-yao, 2021. "Discrete quantum droplets in one-dimensional optical lattices," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    8. Al-Marzoug, S.M. & Baizakov, B.B. & Bahlouli, H., 2023. "Two-dimensional symbiotic solitons and quantum droplets in a quasi-one-dimensional optical lattice," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    9. Zhenzhong Shi & Sachith Dissanayake & Philippe Corboz & William Steinhardt & David Graf & D. M. Silevitch & Hanna A. Dabkowska & T. F. Rosenbaum & Frédéric Mila & Sara Haravifard, 2022. "Discovery of quantum phases in the Shastry-Sutherland compound SrCu2(BO3)2 under extreme conditions of field and pressure," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Mieck, B., 2003. "Functional integral and transfer-matrix approach for 1D bosonic many-body systems with a contact potential," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 325(3), pages 439-454.
    11. Rafael F. Barros & Subhajit Bej & Markus Hiekkamäki & Marco Ornigotti & Robert Fickler, 2024. "Observation of the topological aberrations of twisted light," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    12. Huang, Hao & Wang, Hongcheng & Chen, Guihua & Chen, Manna & Lim, Chin Seong & Wong, Kok-Cheong, 2023. "Stable quantum droplets with higher-order vortex in radial lattices," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    13. Yoshito Watanabe & Atsushi Miyake & Masaki Gen & Yuta Mizukami & Kenichiro Hashimoto & Takasada Shibauchi & Akihiko Ikeda & Masashi Tokunaga & Takashi Kurumaji & Yusuke Tokunaga & Taka-hisa Arima, 2023. "Double dome structure of the Bose–Einstein condensation in diluted S = 3/2 quantum magnets," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Tao Chen & Chenxi Huang & Ivan Velkovsky & Kaden R. A. Hazzard & Jacob P. Covey & Bryce Gadway, 2024. "Strongly interacting Rydberg atoms in synthetic dimensions with a magnetic flux," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    15. Shi, Zeyun & Badshah, Fazal & Qin, Lu & Zhou, Yuan & Huang, Haibo & Zhang, Yong-Chang, 2023. "Spatially modulated control of pattern formation in a general nonlocal nonlinear system," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    16. Liu, Xiuye & Zeng, Jianhua, 2022. "Overcoming the snaking instability and nucleation of dark solitons in nonlinear Kerr media by spatially inhomogeneous defocusing nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    17. Liu, Xiuye & Zeng, Jianhua, 2023. "Matter-wave gap solitons and vortices of dense Bose–Einstein condensates in Moiré optical lattices," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    18. Beini Gao & Daniel G. Suárez-Forero & Supratik Sarkar & Tsung-Sheng Huang & Deric Session & Mahmoud Jalali Mehrabad & Ruihao Ni & Ming Xie & Pranshoo Upadhyay & Jonathan Vannucci & Sunil Mittal & Kenj, 2024. "Excitonic Mott insulator in a Bose-Fermi-Hubbard system of moiré WS2/WSe2 heterobilayer," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    19. Barrios, Alan J. & Valdés-Hernández, Andrea & Sevilla, Francisco J., 2022. "Dynamics of mode entanglement induced by particle-tunneling in the extended Bose–Hubbard dimer model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    20. Zhou, Zheng & Shi, Yimin & Tang, Shiqing & Deng, Haiming & Wang, Haibin & He, Xiongying & Zhong, Honghua, 2021. "Controllable dissipative quantum droplets in one-dimensional optical lattices," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:161:y:2022:i:c:s0960077922005781. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.