IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v528y2015i7580d10.1038_nature15750.html
   My bibliography  Save this article

Measuring entanglement entropy in a quantum many-body system

Author

Listed:
  • Rajibul Islam

    (Harvard University)

  • Ruichao Ma

    (Harvard University)

  • Philipp M. Preiss

    (Harvard University)

  • M. Eric Tai

    (Harvard University)

  • Alexander Lukin

    (Harvard University)

  • Matthew Rispoli

    (Harvard University)

  • Markus Greiner

    (Harvard University)

Abstract

Entanglement, which describes non-local correlations between quantum objects, is very difficult to measure, especially in systems of itinerant particles; here spatial entanglement is measured for ultracold bosonic atoms in optical lattices.

Suggested Citation

  • Rajibul Islam & Ruichao Ma & Philipp M. Preiss & M. Eric Tai & Alexander Lukin & Matthew Rispoli & Markus Greiner, 2015. "Measuring entanglement entropy in a quantum many-body system," Nature, Nature, vol. 528(7580), pages 77-83, December.
  • Handle: RePEc:nat:nature:v:528:y:2015:i:7580:d:10.1038_nature15750
    DOI: 10.1038/nature15750
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature15750
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature15750?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. F. H. B. Somhorst & R. Meer & M. Correa Anguita & R. Schadow & H. J. Snijders & M. Goede & B. Kassenberg & P. Venderbosch & C. Taballione & J. P. Epping & H. H. Vlekkert & J. Timmerhuis & J. F. F. Bul, 2023. "Quantum simulation of thermodynamics in an integrated quantum photonic processor," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Tong Liu & Shang Liu & Hekang Li & Hao Li & Kaixuan Huang & Zhongcheng Xiang & Xiaohui Song & Kai Xu & Dongning Zheng & Heng Fan, 2023. "Observation of entanglement transition of pseudo-random mixed states," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. Canella, G.A. & França, V.V., 2020. "Entanglement in disordered superfluids: The impact of density, interaction and harmonic confinement on the Superconductor–Insulator transition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    4. Jordyn Hales & Utkarsh Bajpai & Tongtong Liu & Denitsa R. Baykusheva & Mingda Li & Matteo Mitrano & Yao Wang, 2023. "Witnessing light-driven entanglement using time-resolved resonant inelastic X-ray scattering," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Jauregui, M. & Zunino, L. & Lenzi, E.K. & Mendes, R.S. & Ribeiro, H.V., 2018. "Characterization of time series via Rényi complexity–entropy curves," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 498(C), pages 74-85.
    6. Zhi-Kang Lin & Yao Zhou & Bin Jiang & Bing-Quan Wu & Li-Mei Chen & Xiao-Yu Liu & Li-Wei Wang & Peng Ye & Jian-Hua Jiang, 2024. "Measuring entanglement entropy and its topological signature for phononic systems," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:528:y:2015:i:7580:d:10.1038_nature15750. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.