IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33563-8.html
   My bibliography  Save this article

Quantum metrology with imperfect measurements

Author

Listed:
  • Yink Loong Len

    (University of Warsaw
    Yale-NUS College)

  • Tuvia Gefen

    (Caltech)

  • Alex Retzker

    (The Hebrew University of Jerusalem
    AWS Center for Quantum Computing)

  • Jan Kołodyński

    (University of Warsaw)

Abstract

The impact of measurement imperfections on quantum metrology protocols has not been approached in a systematic manner so far. In this work, we tackle this issue by generalising firstly the notion of quantum Fisher information to account for noisy detection, and propose tractable methods allowing for its approximate evaluation. We then show that in canonical scenarios involving N probes with local measurements undergoing readout noise, the optimal sensitivity depends crucially on the control operations allowed to counterbalance the measurement imperfections—with global control operations, the ideal sensitivity (e.g., the Heisenberg scaling) can always be recovered in the asymptotic N limit, while with local control operations the quantum-enhancement of sensitivity is constrained to a constant factor. We illustrate our findings with an example of NV-centre magnetometry, as well as schemes involving spin-1/2 probes with bit-flip errors affecting their two-outcome measurements, for which we find the input states and control unitary operations sufficient to attain the ultimate asymptotic precision.

Suggested Citation

  • Yink Loong Len & Tuvia Gefen & Alex Retzker & Jan Kołodyński, 2022. "Quantum metrology with imperfect measurements," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33563-8
    DOI: 10.1038/s41467-022-33563-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33563-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33563-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Onur Hosten & Nils J. Engelsen & Rajiv Krishnakumar & Mark A. Kasevich, 2016. "Measurement noise 100 times lower than the quantum-projection limit using entangled atoms," Nature, Nature, vol. 529(7587), pages 505-508, January.
    2. M. W. Mitchell & J. S. Lundeen & A. M. Steinberg, 2004. "Super-resolving phase measurements with a multiphoton entangled state," Nature, Nature, vol. 429(6988), pages 161-164, May.
    3. J. Estève & C. Gross & A. Weller & S. Giovanazzi & M. K. Oberthaler, 2008. "Squeezing and entanglement in a Bose–Einstein condensate," Nature, Nature, vol. 455(7217), pages 1216-1219, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Jia & Valeriy Novikov & Tulio Brito Brasil & Emil Zeuthen & Jörg Helge Müller & Eugene S. Polzik, 2023. "Acoustic frequency atomic spin oscillator in the quantum regime," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Zhe He & Yide Zhang & Xin Tong & Lei Li & Lihong V. Wang, 2023. "Quantum microscopy of cells at the Heisenberg limit," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Jordyn Hales & Utkarsh Bajpai & Tongtong Liu & Denitsa R. Baykusheva & Mingda Li & Matteo Mitrano & Yao Wang, 2023. "Witnessing light-driven entanglement using time-resolved resonant inelastic X-ray scattering," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33563-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.