IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-10157-5.html
   My bibliography  Save this article

Covalent organic framework membranes through a mixed-dimensional assembly for molecular separations

Author

Listed:
  • Hao Yang

    (Tianjin University
    Collaborative Innovation Center of Chemical Science and Engineering (Tianjin))

  • Leixin Yang

    (Tianjin University
    Collaborative Innovation Center of Chemical Science and Engineering (Tianjin))

  • Hongjian Wang

    (Tianjin University
    Collaborative Innovation Center of Chemical Science and Engineering (Tianjin))

  • Ziang Xu

    (Tianjin University
    Collaborative Innovation Center of Chemical Science and Engineering (Tianjin))

  • Yumeng Zhao

    (Tianjin University
    Collaborative Innovation Center of Chemical Science and Engineering (Tianjin))

  • Yi Luo

    (Tianjin University
    Collaborative Innovation Center of Chemical Science and Engineering (Tianjin))

  • Nayab Nasir

    (Tianjin University
    Collaborative Innovation Center of Chemical Science and Engineering (Tianjin))

  • Yimeng Song

    (Tianjin University
    Collaborative Innovation Center of Chemical Science and Engineering (Tianjin))

  • Hong Wu

    (Tianjin University
    Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
    Tianjin University)

  • Fusheng Pan

    (Tianjin University
    Collaborative Innovation Center of Chemical Science and Engineering (Tianjin))

  • Zhongyi Jiang

    (Tianjin University
    Collaborative Innovation Center of Chemical Science and Engineering (Tianjin))

Abstract

Covalent organic frameworks (COFs) hold great promise in molecular separations owing to their robust, ordered and tunable porous network structures. Currently, the pore size of COFs is usually much larger than most small molecules. Meanwhile, the weak interlamellar interaction between COF nanosheets impedes the preparation of defect-free membranes. Herein, we report a series of COF membranes through a mixed-dimensional assembly of 2D COF nanosheets and 1D cellulose nanofibers (CNFs). The pore size of 0.45–1.0 nm is acquired from the sheltering effect of CNFs, rendering membranes precise molecular sieving ability, besides the multiple interactions between COFs and CNFs elevate membrane stability. Accordingly, the membranes exhibit a flux of 8.53 kg m−2 h−1 with a separation factor of 3876 for n-butanol dehydration, and high permeance of 42.8 L m−2 h−1 bar−1 with a rejection of 96.8% for Na2SO4 removal. Our mixed-dimensional design may inspire the fabrication and application of COF membranes.

Suggested Citation

  • Hao Yang & Leixin Yang & Hongjian Wang & Ziang Xu & Yumeng Zhao & Yi Luo & Nayab Nasir & Yimeng Song & Hong Wu & Fusheng Pan & Zhongyi Jiang, 2019. "Covalent organic framework membranes through a mixed-dimensional assembly for molecular separations," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10157-5
    DOI: 10.1038/s41467-019-10157-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-10157-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-10157-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Changwei Zhao & Yanjun Zhang & Yuewen Jia & Bojun Li & Wenjing Tang & Chuning Shang & Rui Mo & Pei Li & Shaomin Liu & Sui Zhang, 2023. "Polyamide membranes with nanoscale ordered structures for fast permeation and highly selective ion-ion separation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Yisa Zhou & Ying Wu & Haoyu Wu & Jian Xue & Li Ding & Rui Wang & Haihui Wang, 2022. "Fast hydrogen purification through graphitic carbon nitride nanosheet membranes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Xiaoyao Wang & Benbing Shi & Hao Yang & Jingyuan Guan & Xu Liang & Chunyang Fan & Xinda You & Yanan Wang & Zhe Zhang & Hong Wu & Tao Cheng & Runnan Zhang & Zhongyi Jiang, 2022. "Assembling covalent organic framework membranes with superior ion exchange capacity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Guohua Zhang & Xinyue Li & Gang Chen & Yue Zhang & Mingfeng Wei & Xiaofei Chen & Bao Li & Yuqing Wu & Lixin Wu, 2023. "Supramolecular framework membrane for precise sieving of small molecules, nanoparticles and proteins," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Hao Yang & Jinhui Xu & Hui Cao & Jie Wu & Dan Zhao, 2023. "Recovery of homogeneous photocatalysts by covalent organic framework membranes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10157-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.