IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33654-6.html
   My bibliography  Save this article

Fast hydrogen purification through graphitic carbon nitride nanosheet membranes

Author

Listed:
  • Yisa Zhou

    (South China University of Technology)

  • Ying Wu

    (South China University of Technology)

  • Haoyu Wu

    (Tsinghua University)

  • Jian Xue

    (South China University of Technology)

  • Li Ding

    (South China University of Technology)

  • Rui Wang

    (South China University of Technology)

  • Haihui Wang

    (Tsinghua University)

Abstract

Two-dimensional graphitic carbon nitride (g-C3N4) nanosheets are ideal candidates for membranes because of their intrinsic in-plane nanopores. However, non-selective defects formed by traditional top-down preparation and the unfavorable re-stacking hinder the application of these nanosheets in gas separation. Herein, we report lamellar g-C3N4 nanosheets as gas separation membranes with a disordered layer-stacking structure based on high quality g-C3N4 nanosheets through bottom-up synthesis. Thanks to fast and highly selective transport through the high-density sieving channels and the interlayer paths, the membranes, superior to state-of-the-art ones, exhibit high H2 permeance of 1.3 × 10−6 mol m−2 s−1 Pa−1 with excellent selectivity for multiple gas mixtures. Notably, these membranes show excellent stability under harsh practice-relevant environments, such as temperature swings, wet atmosphere and long-term operation of more than 200 days. Therefore, such lamellar membranes with high quality g-C3N4 nanosheets hold great promise for gas separation applications.

Suggested Citation

  • Yisa Zhou & Ying Wu & Haoyu Wu & Jian Xue & Li Ding & Rui Wang & Haihui Wang, 2022. "Fast hydrogen purification through graphitic carbon nitride nanosheet membranes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33654-6
    DOI: 10.1038/s41467-022-33654-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33654-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33654-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xuerui Wang & Chenglong Chi & Kang Zhang & Yuhong Qian & Krishna M. Gupta & Zixi Kang & Jianwen Jiang & Dan Zhao, 2017. "Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation," Nature Communications, Nature, vol. 8(1), pages 1-10, April.
    2. Quadrelli, Roberta & Peterson, Sierra, 2007. "The energy-climate challenge: Recent trends in CO2 emissions from fuel combustion," Energy Policy, Elsevier, vol. 35(11), pages 5938-5952, November.
    3. Hao Yang & Leixin Yang & Hongjian Wang & Ziang Xu & Yumeng Zhao & Yi Luo & Nayab Nasir & Yimeng Song & Hong Wu & Fusheng Pan & Zhongyi Jiang, 2019. "Covalent organic framework membranes through a mixed-dimensional assembly for molecular separations," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    4. David S. Sholl & Ryan P. Lively, 2016. "Seven chemical separations to change the world," Nature, Nature, vol. 532(7600), pages 435-437, April.
    5. Gang (Kevin) Li & Jin Shang & Qinfen Gu & Rohan V. Awati & Nathan Jensen & Andrew Grant & Xueying Zhang & David S. Sholl & Jefferson Z. Liu & Paul A. Webley & Eric F. May, 2017. "Temperature-regulated guest admission and release in microporous materials," Nature Communications, Nature, vol. 8(1), pages 1-9, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezakazemi, Mashallah & Arabi Shamsabadi, Ahmad & Lin, Haiqing & Luis, Patricia & Ramakrishna, Seeram & Aminabhavi, Tejraj M., 2021. "Sustainable MXenes-based membranes for highly energy-efficient separations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. K. Narayanan & Santosh K. Sahu, 2014. "Energy Consumption Response to Climate Change: Policy Options for India," IIM Kozhikode Society & Management Review, , vol. 3(2), pages 123-133, July.
    3. Zeyu Liu & Youshi Lan & Jianfeng Jia & Yiyun Geng & Xiaobin Dai & Litang Yan & Tongyang Hu & Jing Chen & Krzysztof Matyjaszewski & Gang Ye, 2022. "Multi-scale computer-aided design and photo-controlled macromolecular synthesis boosting uranium harvesting from seawater," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Bermudez, Bladimir Carrillo & Santos Branco, Danyelle Karine & Trujillo, Juan Carlos & de Lima, Joao Eustaquio, 2015. "Deforestation and Infant Health: Evidence from an Environmental Conservation Policy in Brazil," 2015 Conference, August 9-14, 2015, Milan, Italy 229064, International Association of Agricultural Economists.
    5. Aprea, Ciro & Maiorino, Angelo, 2011. "An experimental investigation of the global environmental impact of the R22 retrofit with R422D," Energy, Elsevier, vol. 36(2), pages 1161-1170.
    6. Jan Wrana & Wojciech Struzik & Bartłomiej Kwiatkowski & Piotr Gleń, 2022. "Release of Energy from Groundwater/with Reduction in CO 2 Emissions of More Than 50% from HVAC in the Extension and Revitalization of the Former Palace of the Sobieski Family in Lublin," Energies, MDPI, vol. 15(18), pages 1-11, September.
    7. Jingqi Wang & Jiapeng Liu & Hongshuai Wang & Musen Zhou & Guolin Ke & Linfeng Zhang & Jianzhong Wu & Zhifeng Gao & Diannan Lu, 2024. "A comprehensive transformer-based approach for high-accuracy gas adsorption predictions in metal-organic frameworks," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Bingbing Yuan & Yuhang Zhang & Pengfei Qi & Dongxiao Yang & Ping Hu & Siheng Zhao & Kaili Zhang & Xiaozhuan Zhang & Meng You & Jiabao Cui & Juhui Jiang & Xiangdong Lou & Q. Jason Niu, 2024. "Self-assembled dendrimer polyamide nanofilms with enhanced effective pore area for ion separation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Xueru Yan & Tianqi Song & Min Li & Zhi Wang & Xinlei Liu, 2024. "Sub-micro porous thin polymer membranes for discriminating H2 and CO2," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Letitia Petrescu & Codruta-Maria Cormos, 2022. "Classical and Process Intensification Methods for Acetic Acid Concentration: Technical and Environmental Assessment," Energies, MDPI, vol. 15(21), pages 1-23, October.
    11. Liu, Pengqiang & Li, Xin & Chang, Hsu-Ling & Su, Nan, 2024. "Natural resources Kuznets curve: The role of mineral resources, urbanization, and digitalization in BRICS economies," Resources Policy, Elsevier, vol. 90(C).
    12. Zhikai Zhang & Yaojie Zhang & Yudong Wang & Qunwei Wang, 2024. "The predictability of carbon futures volatility: New evidence from the spillovers of fossil energy futures returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(4), pages 557-584, April.
    13. Ali, Ghaffar & Pumijumnong, Nathsuda & Cui, Shenghui, 2018. "Valuation and validation of carbon sources and sinks through land cover/use change analysis: The case of Bangkok metropolitan area," Land Use Policy, Elsevier, vol. 70(C), pages 471-478.
    14. Fidelis. I. Abam & Ogheneruona E. Diemuodeke & Ekwe. B. Ekwe & Mohammed Alghassab & Olusegun D. Samuel & Zafar A. Khan & Muhammad Imran & Muhammad Farooq, 2020. "Exergoeconomic and Environmental Modeling of Integrated Polygeneration Power Plant with Biomass-Based Syngas Supplemental Firing," Energies, MDPI, vol. 13(22), pages 1-27, November.
    15. Deveci, Muhammet & Gokasar, Ilgin & Pamucar, Dragan & Zaidan, Aws Alaa & Wen, Xin & Gupta, Brij B., 2023. "Evaluation of Cooperative Intelligent Transportation System scenarios for resilience in transportation using type-2 neutrosophic fuzzy VIKOR," Transportation Research Part A: Policy and Practice, Elsevier, vol. 172(C).
    16. Peixin Zhang & Lifeng Yang & Xing Liu & Jun Wang & Xian Suo & Liyuan Chen & Xili Cui & Huabin Xing, 2022. "Ultramicroporous material based parallel and extended paraffin nano-trap for benchmark olefin purification," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Thambiran, Tirusha & Diab, Roseanne D., 2011. "Air quality and climate change co-benefits for the industrial sector in Durban, South Africa," Energy Policy, Elsevier, vol. 39(10), pages 6658-6666, October.
    18. Mariem Ferchichi & Laszlo Hegely & Peter Lang, 2021. "Decrease of energy demand of semi-batch distillation policies," Energy & Environment, , vol. 32(8), pages 1479-1503, December.
    19. Madurai Elavarasan, Rajvikram & Pugazhendhi, Rishi & Irfan, Muhammad & Mihet-Popa, Lucian & Campana, Pietro Elia & Khan, Irfan Ahmad, 2022. "A novel Sustainable Development Goal 7 composite index as the paradigm for energy sustainability assessment: A case study from Europe," Applied Energy, Elsevier, vol. 307(C).
    20. Guohua Zhang & Xinyue Li & Gang Chen & Yue Zhang & Mingfeng Wei & Xiaofei Chen & Bao Li & Yuqing Wu & Lixin Wu, 2023. "Supramolecular framework membrane for precise sieving of small molecules, nanoparticles and proteins," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33654-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.