IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52487-z.html
   My bibliography  Save this article

Giant gateable thermoelectric conversion by tuning the ion linkage interactions in covalent organic framework membranes

Author

Listed:
  • Shijie Yin

    (Zhejiang Sci-Tech University)

  • Jianguo Li

    (Zhejiang Sci-Tech University)

  • Zhuozhi Lai

    (Zhejiang University)

  • Qing-Wei Meng

    (Zhejiang University)

  • Weipeng Xian

    (Zhejiang University)

  • Zhifeng Dai

    (Zhejiang Sci-Tech University
    Longgang Institute of Zhejiang Sci-Tech University)

  • Sai Wang

    (Zhejiang University)

  • Li Zhang

    (Zhejiang Sci-Tech University)

  • Yubing Xiong

    (Zhejiang Sci-Tech University
    Longgang Institute of Zhejiang Sci-Tech University)

  • Shengqian Ma

    (University of North Texas)

  • Qi Sun

    (Zhejiang University)

Abstract

Efficient energy conversion using ions as carriers necessitates membranes that sustain high permselectivity in high salinity conditions, which presents a significant challenge. This study addresses the issue by manipulating the linkages in covalent-organic-framework membranes, altering the distribution of electrostatic potentials and thereby influencing the short-range interactions between ions and membranes. We show that a charge-neutral covalent-organic-framework membrane with β-ketoenamine linkages achieves record permselectivity in high salinity environments. Additionally, the membrane retains its permselectivity under temperature gradients, providing a method for converting low-grade waste heat into electrical energy. Experiments reveal that with a 3 M KCl solution and a 50 K temperature difference, the membrane generates an output power density of 5.70 W m−2. Furthermore, guided by a short-range ionic screening mechanism, the membrane exhibits adaptable permselectivity, allowing reversible and controllable operations by finely adjusting charge polarity and magnitude on the membrane’s channel surfaces via ion adsorption. Notably, treatment with K3PO4 solutions significantly enhances permselectivity, resulting in a giant output power density of 20.22 W m−2, a 3.6-fold increase over the untreated membrane, setting a benchmark for converting low-grade heat into electrical energy.

Suggested Citation

  • Shijie Yin & Jianguo Li & Zhuozhi Lai & Qing-Wei Meng & Weipeng Xian & Zhifeng Dai & Sai Wang & Li Zhang & Yubing Xiong & Shengqian Ma & Qi Sun, 2024. "Giant gateable thermoelectric conversion by tuning the ion linkage interactions in covalent organic framework membranes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52487-z
    DOI: 10.1038/s41467-024-52487-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52487-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52487-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vipin Amoli & Joo Sung Kim & Eunsong Jee & Yoon Sun Chung & So Young Kim & Jehyoung Koo & Hanbin Choi & Yunah Kim & Do Hwan Kim, 2019. "A bioinspired hydrogen bond-triggered ultrasensitive ionic mechanoreceptor skin," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    2. Zhen Zhang & Preeti Bhauriyal & Hafeesudeen Sahabudeen & Zhiyong Wang & Xiaohui Liu & Mike Hambsch & Stefan C. B. Mannsfeld & Renhao Dong & Thomas Heine & Xinliang Feng, 2022. "Cation-selective two-dimensional polyimine membranes for high-performance osmotic energy conversion," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Qirui Liang & Yanan Huang & Yaxin Guo & Xin Zhang & Xiaomeng Hu & Hui Zeng & Kang Liang & Dongyuan Zhao & Lei Jiang & Biao Kong, 2024. "Efficient osmosis-powered production of green hydrogen," Nature Sustainability, Nature, vol. 7(5), pages 628-639, May.
    4. Meidi Wang & Penghui Zhang & Xu Liang & Junyi Zhao & Yawei Liu & Yu Cao & Hongjian Wang & Yu Chen & Zhiming Zhang & Fusheng Pan & Zhenjie Zhang & Zhongyi Jiang, 2022. "Ultrafast seawater desalination with covalent organic framework membranes," Nature Sustainability, Nature, vol. 5(6), pages 518-526, June.
    5. Qing Guo & Zhuozhi Lai & Xiuhui Zuo & Weipeng Xian & Shaochun Wu & Liping Zheng & Zhifeng Dai & Sai Wang & Qi Sun, 2023. "Photoelectric responsive ionic channel for sustainable energy harvesting," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Hao Yang & Jinhui Xu & Hui Cao & Jie Wu & Dan Zhao, 2023. "Recovery of homogeneous photocatalysts by covalent organic framework membranes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Weipeng Xian & Xiuhui Zuo & Changjia Zhu & Qing Guo & Qing-Wei Meng & Xincheng Zhu & Sai Wang & Shengqian Ma & Qi Sun, 2022. "Anomalous thermo-osmotic conversion performance of ionic covalent-organic-framework membranes in response to charge variations," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Yang Li & Qianxun Wu & Xinghua Guo & Meicheng Zhang & Bin Chen & Guanyi Wei & Xing Li & Xiaofeng Li & Shoujian Li & Lijian Ma, 2020. "Laminated self-standing covalent organic framework membrane with uniformly distributed subnanopores for ionic and molecular sieving," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liping Zheng & Zhengqing Zhang & Zhuozhi Lai & Shijie Yin & Weipeng Xian & Qing-Wei Meng & Zhifeng Dai & Yubing Xiong & Xiangju Meng & Shengqian Ma & Feng-Shou Xiao & Qi Sun, 2024. "Covalent organic framework membrane reactor for boosting catalytic performance," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Chengcheng Zhu & Li Xu & Yazi Liu & Jiang Liu & Jin Wang & Hanjun Sun & Ya-Qian Lan & Chen Wang, 2024. "Polyoxometalate-based plasmonic electron sponge membrane for nanofluidic osmotic energy conversion," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Jiadong Tang & Yun Wang & Hongyang Yang & Qianqian Zhang & Ce Wang & Leyuan Li & Zilong Zheng & Yuhong Jin & Hao Wang & Yifan Gu & Tieyong Zuo, 2024. "All-natural 2D nanofluidics as highly-efficient osmotic energy generators," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Elvis K. Boahen & Baohai Pan & Hyukmin Kweon & Joo Sung Kim & Hanbin Choi & Zhengyang Kong & Dong Jun Kim & Jin Zhu & Wu Bin Ying & Kyung Jin Lee & Do Hwan Kim, 2022. "Ultrafast, autonomous self-healable iontronic skin exhibiting piezo-ionic dynamics," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Xiangnan He & Biao Zhang & Qingjiang Liu & Hao Chen & Jianxiang Cheng & Bingcong Jian & Hanlin Yin & Honggeng Li & Ke Duan & Jianwei Zhang & Qi Ge, 2024. "Highly conductive and stretchable nanostructured ionogels for 3D printing capacitive sensors with superior performance," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Luo, Qizhao & Pei, Junxian & Yun, Panfeng & Hu, Xuejiao & Cao, Bin & Shan, Kunpeng & Tang, Bin & Huang, Kaiming & Chen, Aofei & Huang, Lu & Huang, Zhi & Jiang, Haifeng, 2023. "Simultaneous water production and electricity generation driven by synergistic temperature-salinity gradient in thermo-osmosis process," Applied Energy, Elsevier, vol. 351(C).
    7. Zhengyang Kong & Elvis K. Boahen & Dong Jun Kim & Fenglong Li & Joo Sung Kim & Hyukmin Kweon & So Young Kim & Hanbin Choi & Jin Zhu & Wu Ying & Do Hwan Kim, 2024. "Ultrafast underwater self-healing piezo-ionic elastomer via dynamic hydrophobic-hydrolytic domains," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Niaz Ali Khan & Runnan Zhang & Xiaoyao Wang & Li Cao & Chandra S. Azad & Chunyang Fan & Jinqiu Yuan & Mengying Long & Hong Wu & Mark. A. Olson & Zhongyi Jiang, 2022. "Assembling covalent organic framework membranes via phase switching for ultrafast molecular transport," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Qian Zhang & Bo Gao & Ling Zhang & Xiaopeng Liu & Jixiang Cui & Yijun Cao & Hongbo Zeng & Qun Xu & Xinwei Cui & Lei Jiang, 2023. "Anomalous water molecular gating from atomic-scale graphene capillaries for precise and ultrafast molecular sieving," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Ningning Bai & Yiheng Xue & Shuiqing Chen & Lin Shi & Junli Shi & Yuan Zhang & Xingyu Hou & Yu Cheng & Kaixi Huang & Weidong Wang & Jin Zhang & Yuan Liu & Chuan Fei Guo, 2023. "A robotic sensory system with high spatiotemporal resolution for texture recognition," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Thomas F. Magnera & Paul I. Dron & Jared P. Bozzone & Milena Jovanovic & Igor Rončević & Edward Tortorici & Wei Bu & Elisa M. Miller & Charles T. Rogers & Josef Michl, 2023. "Porphene and porphite as porphyrin analogs of graphene and graphite," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Weipeng Xian & Xiuhui Zuo & Changjia Zhu & Qing Guo & Qing-Wei Meng & Xincheng Zhu & Sai Wang & Shengqian Ma & Qi Sun, 2022. "Anomalous thermo-osmotic conversion performance of ionic covalent-organic-framework membranes in response to charge variations," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Zongyao Zhou & Kangning Zhao & Heng-Yu Chi & Yueqing Shen & Shuqing Song & Kuang-Jung Hsu & Mojtaba Chevalier & Wenxiong Shi & Kumar Varoon Agrawal, 2024. "Electrochemical-repaired porous graphene membranes for precise ion-ion separation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Yuan Zhang & Junlong Yang & Xingyu Hou & Gang Li & Liu Wang & Ningning Bai & Minkun Cai & Lingyu Zhao & Yan Wang & Jianming Zhang & Ke Chen & Xiang Wu & Canhui Yang & Yuan Dai & Zhengyou Zhang & Chuan, 2022. "Highly stable flexible pressure sensors with a quasi-homogeneous composition and interlinked interfaces," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Quanquan Guo & Wei Li & Xiaodong Li & Jiaxu Zhang & Davood Sabaghi & Jianjun Zhang & Bowen Zhang & Dongqi Li & Jingwei Du & Xingyuan Chu & Sein Chung & Kilwon Cho & Nguyen Ngan Nguyen & Zhongquan Liao, 2024. "Proton-selective coating enables fast-kinetics high-mass-loading cathodes for sustainable zinc batteries," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Qinghua Liu & Ming Liu & Zhe Zhang & Congcong Yin & Jianghai Long & Mingjie Wei & Yong Wang, 2024. "Covalent organic framework membranes with vertically aligned nanorods for efficient separation of rare metal ions," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. Si-Hua Liu & Jun-Hao Zhou & Chunrui Wu & Peng Zhang & Xingzhong Cao & Jian-Ke Sun, 2024. "Sub-8 nm networked cage nanofilm with tunable nanofluidic channels for adaptive sieving," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Hai Liu & Xinxi Huang & Yang Wang & Baian Kuang & Wanbin Li, 2024. "Nanowire-assisted electrochemical perforation of graphene oxide nanosheets for molecular separation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Ningning He & Yingdi Zou & Cheng Chen & Minghao Tan & Yingdan Zhang & Xiaofeng Li & Zhimin Jia & Jie Zhang & Honghan Long & Haiyue Peng & Kaifu Yu & Bo Jiang & Ziqian Han & Ning Liu & Yang Li & Lijian, 2024. "Constructing ordered and tunable extrinsic porosity in covalent organic frameworks via water-mediated soft-template strategy," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. Xiaoyao Wang & Benbing Shi & Hao Yang & Jingyuan Guan & Xu Liang & Chunyang Fan & Xinda You & Yanan Wang & Zhe Zhang & Hong Wu & Tao Cheng & Runnan Zhang & Zhongyi Jiang, 2022. "Assembling covalent organic framework membranes with superior ion exchange capacity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52487-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.