IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38083-7.html
   My bibliography  Save this article

Tethered agonist activated ADGRF1 structure and signalling analysis reveal basis for G protein coupling

Author

Listed:
  • Daniel T. D. Jones

    (Harvard Medical School)

  • Andrew N. Dates

    (Harvard Medical School)

  • Shaun D. Rawson

    (Harvard Medical School)

  • Maggie M. Burruss

    (Harvard Medical School)

  • Colin H. Lipper

    (Harvard Medical School)

  • Stephen C. Blacklow

    (Harvard Medical School
    Dana Farber Cancer Institute)

Abstract

Adhesion G Protein Coupled Receptors (aGPCRs) have evolved an activation mechanism to translate extracellular force into liberation of a tethered agonist (TA) to effect cell signalling. We report here that ADGRF1 can signal through all major G protein classes and identify the structural basis for a previously reported Gαq preference by cryo-EM. Our structure shows that Gαq preference in ADGRF1 may derive from tighter packing at the conserved F569 of the TA, altering contacts between TM helix I and VII, with a concurrent rearrangement of TM helix VII and helix VIII at the site of Gα recruitment. Mutational studies of the interface and of contact residues within the 7TM domain identify residues critical for signalling, and suggest that Gαs signalling is more sensitive to mutation of TA or binding site residues than Gαq. Our work advances the detailed molecular understanding of aGPCR TA activation, identifying features that potentially explain preferential signal modulation.

Suggested Citation

  • Daniel T. D. Jones & Andrew N. Dates & Shaun D. Rawson & Maggie M. Burruss & Colin H. Lipper & Stephen C. Blacklow, 2023. "Tethered agonist activated ADGRF1 structure and signalling analysis reveal basis for G protein coupling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38083-7
    DOI: 10.1038/s41467-023-38083-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38083-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38083-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiangli Qu & Na Qiu & Mu Wang & Bingjie Zhang & Juan Du & Zhiwei Zhong & Wei Xu & Xiaojing Chu & Limin Ma & Cuiying Yi & Shuo Han & Wenqing Shui & Qiang Zhao & Beili Wu, 2022. "Structural basis of tethered agonism of the adhesion GPCRs ADGRD1 and ADGRF1," Nature, Nature, vol. 604(7907), pages 779-785, April.
    2. Xinyan Zhu & Yu Qian & Xiaowan Li & Zhenmei Xu & Ruixue Xia & Na Wang & Jiale Liang & Han Yin & Anqi Zhang & Changyou Guo & Guangfu Wang & Yuanzheng He, 2022. "Structural basis of adhesion GPCR GPR110 activation by stalk peptide and G-proteins coupling," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Manuel Grundmann & Nicole Merten & Davide Malfacini & Asuka Inoue & Philip Preis & Katharina Simon & Nelly Rüttiger & Nicole Ziegler & Tobias Benkel & Nina Katharina Schmitt & Satoru Ishida & Ines Mül, 2018. "Lack of beta-arrestin signaling in the absence of active G proteins," Nature Communications, Nature, vol. 9(1), pages 1-16, December.
    4. Ji-Won Lee & Bill X. Huang & HeungSun Kwon & Md Abdur Rashid & Giorgi Kharebava & Abhishek Desai & Samarjit Patnaik & Juan Marugan & Hee-Yong Kim, 2016. "Orphan GPR110 (ADGRF1) targeted by N-docosahexaenoylethanolamine in development of neurons and cognitive function," Nature Communications, Nature, vol. 7(1), pages 1-16, December.
    5. Yu-Qi Ping & Peng Xiao & Fan Yang & Ru-Jia Zhao & Sheng-Chao Guo & Xu Yan & Xiang Wu & Chao Zhang & Yan Lu & Fenghui Zhao & Fulai Zhou & Yue-Tong Xi & Wanchao Yin & Feng-Zhen Liu & Dong-Fang He & Dao-, 2022. "Structural basis for the tethered peptide activation of adhesion GPCRs," Nature, Nature, vol. 604(7907), pages 763-770, April.
    6. Peng Xiao & Shengchao Guo & Xin Wen & Qing-Tao He & Hui Lin & Shen-Ming Huang & Lu Gou & Chao Zhang & Zhao Yang & Ya-Ni Zhong & Chuan-Cheng Yang & Yu Li & Zheng Gong & Xiao-Na Tao & Zhi-Shuai Yang & Y, 2022. "Tethered peptide activation mechanism of the adhesion GPCRs ADGRG2 and ADGRG4," Nature, Nature, vol. 604(7907), pages 771-778, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Szymon P. Kordon & Kristina Cechova & Sumit J. Bandekar & Katherine Leon & Przemysław Dutka & Gracie Siffer & Anthony A. Kossiakoff & Reza Vafabakhsh & Demet Araç, 2024. "Conformational coupling between extracellular and transmembrane domains modulates holo-adhesion GPCR function," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Szymon P. Kordon & Przemysław Dutka & Justyna M. Adamska & Sumit J. Bandekar & Katherine Leon & Satchal K. Erramilli & Brock Adams & Jingxian Li & Anthony A. Kossiakoff & Demet Araç, 2023. "Isoform- and ligand-specific modulation of the adhesion GPCR ADGRL3/Latrophilin3 by a synthetic binder," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Xinyan Zhu & Yu Qian & Xiaowan Li & Zhenmei Xu & Ruixue Xia & Na Wang & Jiale Liang & Han Yin & Anqi Zhang & Changyou Guo & Guangfu Wang & Yuanzheng He, 2022. "Structural basis of adhesion GPCR GPR110 activation by stalk peptide and G-proteins coupling," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Jiale Liang & Asuka Inoue & Tatsuya Ikuta & Ruixue Xia & Na Wang & Kouki Kawakami & Zhenmei Xu & Yu Qian & Xinyan Zhu & Anqi Zhang & Changyou Guo & Zhiwei Huang & Yuanzheng He, 2023. "Structural basis of lysophosphatidylserine receptor GPR174 ligand recognition and activation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Junke Liu & Hengmin Tang & Chanjuan Xu & Shengnan Zhou & Xunying Zhu & Yuanyuan Li & Laurent Prézeau & Tao Xu & Jean-Philippe Pin & Philippe Rondard & Wei Ji & Jianfeng Liu, 2022. "Biased signaling due to oligomerization of the G protein-coupled platelet-activating factor receptor," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    6. Yulong Gong & Bingyuan Yang & Dingdong Zhang & Yue Zhang & Zihan Tang & Liu Yang & Katie C. Coate & Linlin Yin & Brittney A. Covington & Ravi S. Patel & Walter A. Siv & Katelyn Sellick & Matthew Shou , 2023. "Hyperaminoacidemia induces pancreatic α cell proliferation via synergism between the mTORC1 and CaSR-Gq signaling pathways," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    7. Xuan Zhang & Guibing Liu & Ya-Ni Zhong & Ru Zhang & Chuan-Cheng Yang & Canyang Niu & Xuanyu Pu & Jingjing Sun & Tianyao Zhang & Lejin Yang & Chao Zhang & Xiu Li & Xinyuan Shen & Peng Xiao & Jin-Peng S, 2024. "Structural basis of ligand recognition and activation of the histamine receptor family," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Dylan Scott Eiger & Noelia Boldizsar & Christopher Cole Honeycutt & Julia Gardner & Stephen Kirchner & Chloe Hicks & Issac Choi & Uyen Pham & Kevin Zheng & Anmol Warman & Jeffrey S. Smith & Jennifer Y, 2022. "Location bias contributes to functionally selective responses of biased CXCR3 agonists," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    9. Tobias Benkel & Mirjam Zimmermann & Julian Zeiner & Sergi Bravo & Nicole Merten & Victor Jun Yu Lim & Edda Sofie Fabienne Matthees & Julia Drube & Elke Miess-Tanneberg & Daniela Malan & Martyna Szpako, 2022. "How Carvedilol activates β2-adrenoceptors," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    10. Janine Holze & Felicitas Lauber & Sofía Soler & Evi Kostenis & Günther Weindl, 2024. "Label-free biosensor assay decodes the dynamics of Toll-like receptor signaling," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    11. Evi Kostenis & Jesus Gomeza & Elke Miess-Tanneberg & Nina Kathleen Blum & Tobias Benkel & Andy Chevigné & Carsten Hoffmann & Peter Kolb & Viacheslav Nikolaev & Maria Waldhoer & Martyna Szpakowska & As, 2023. "Reply to: How carvedilol does not activate β2-adrenoceptors," Nature Communications, Nature, vol. 14(1), pages 1-3, December.
    12. Ruixue Xia & Shuang Shi & Zhenmei Xu & Henry F. Vischer & Albert D. Windhorst & Yu Qian & Yaning Duan & Jiale Liang & Kai Chen & Anqi Zhang & Changyou Guo & Rob Leurs & Yuanzheng He, 2024. "Structural basis of ligand recognition and design of antihistamines targeting histamine H4 receptor," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Xiangyu Ma & Li-Nan Chen & Menghui Liao & Liyan Zhang & Kun Xi & Jiamin Guo & Cangsong Shen & Dan-Dan Shen & Pengjun Cai & Qingya Shen & Jieyu Qi & Huibing Zhang & Shao-Kun Zang & Ying-Jun Dong & Luwe, 2024. "Molecular insights into the activation mechanism of GPR156 in maintaining auditory function," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    14. Nishaben M. Patel & Léa Ripoll & Chloe J. Peach & Ning Ma & Emily E. Blythe & Nagarajan Vaidehi & Nigel W. Bunnett & Mark von Zastrow & Sivaraj Sivaramakrishnan, 2024. "Myosin VI drives arrestin-independent internalization and signaling of GPCRs," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    15. Julian Brands & Sergi Bravo & Lars Jürgenliemke & Lukas Grätz & Hannes Schihada & Fabian Frechen & Judith Alenfelder & Cy Pfeil & Paul Georg Ohse & Suzune Hiratsuka & Kouki Kawakami & Luna C. Schmacke, 2024. "A molecular mechanism to diversify Ca2+ signaling downstream of Gs protein-coupled receptors," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    16. Yu Qian & Zhengxiong Ma & Zhenmei Xu & Yaning Duan & Yangjie Xiong & Ruixue Xia & Xinyan Zhu & Zongwei Zhang & Xinyu Tian & Han Yin & Jian Liu & Jing Song & Yang Lu & Anqi Zhang & Changyou Guo & Lihua, 2024. "Structural basis of Frizzled 4 in recognition of Dishevelled 2 unveils mechanism of WNT signaling activation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38083-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.