Author
Listed:
- Florian Seufert
(Medical Faculty)
- Guillermo Pérez-Hernández
(corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin)
- Gáspár Pándy-Szekeres
(Universitetsparken 2
Magyar Tudósok körútja 2.)
- Ramon Guixà-González
(corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin
Institute for Advanced Chemistry of Catalonia (IQAC-CSIC))
- Tobias Langenhan
(Leipzig University
Comprehensive Cancer Center Central Germany (CCCG)
Leipzig University)
- David E. Gloriam
(Universitetsparken 2)
- Peter W. Hildebrand
(Medical Faculty
Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI))
Abstract
The GPCR autoproteolysis inducing (GAIN) domain is an ancient protein fold ubiquitous in adhesion G protein-coupled receptors (aGPCR). It contains a tethered agonist necessary and sufficient for receptor activation. The GAIN domain is a hotspot for pathological mutations. However, the low primary sequence conservation of GAIN domains has thus far hindered the knowledge transfer across different GAIN domains in human receptors as well as species orthologs. Here, we present a scheme for generic residue numbering of GAIN domains, based on structural alignments of over 14,000 modeled GAIN domain structures. This scheme is implemented in the GPCR database (GPCRdb) and elucidates the domain topology across different aGPCRs and their homologs in a large panel of species. We identify conservation hotspots and statistically cancer-enriched positions in human aGPCRs and show the transferability of positional and structural information between GAIN domain homologs. The GAIN-GRN scheme provides a robust strategy to allocate structural homologies at the primary and secondary levels also to GAIN domains of polycystic kidney disease 1/PKD1-like proteins, which now renders positions in both GAIN domain types comparable to one another. In summary, our work enables researchers to generate hypothesis and rationalize experiments related to GAIN domain function and pathology.
Suggested Citation
Florian Seufert & Guillermo Pérez-Hernández & Gáspár Pándy-Szekeres & Ramon Guixà-González & Tobias Langenhan & David E. Gloriam & Peter W. Hildebrand, 2025.
"Generic residue numbering of the GAIN domain of adhesion GPCRs,"
Nature Communications, Nature, vol. 16(1), pages 1-11, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55466-6
DOI: 10.1038/s41467-024-55466-6
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55466-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.