IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33569-2.html
   My bibliography  Save this article

Location bias contributes to functionally selective responses of biased CXCR3 agonists

Author

Listed:
  • Dylan Scott Eiger

    (Duke University)

  • Noelia Boldizsar

    (Duke University)

  • Christopher Cole Honeycutt

    (Duke University)

  • Julia Gardner

    (Duke University)

  • Stephen Kirchner

    (Duke University
    Duke University)

  • Chloe Hicks

    (Duke University)

  • Issac Choi

    (Duke University)

  • Uyen Pham

    (Duke University)

  • Kevin Zheng

    (Harvard Medical School)

  • Anmol Warman

    (Duke University)

  • Jeffrey S. Smith

    (Harvard Medical School
    Brigham and Women’s Hospital
    Beth Israel Deaconess Medical Center
    Boston Children’s Hospital)

  • Jennifer Y. Zhang

    (Duke University
    Duke University)

  • Sudarshan Rajagopal

    (Duke University
    Duke University)

Abstract

Some G protein-coupled receptor (GPCR) ligands act as “biased agonists” that preferentially activate specific signaling transducers over others. Although GPCRs are primarily found at the plasma membrane, GPCRs can traffic to and signal from many subcellular compartments. Here, we determine that differential subcellular signaling contributes to the biased signaling generated by three endogenous ligands of the GPCR CXC chemokine receptor 3 (CXCR3). The signaling profile of CXCR3 changes as it traffics from the plasma membrane to endosomes in a ligand-specific manner. Endosomal signaling is critical for biased activation of G proteins, β-arrestins, and extracellular-signal-regulated kinase (ERK). In CD8 + T cells, the chemokines promote unique transcriptional responses predicted to regulate inflammatory pathways. In a mouse model of contact hypersensitivity, β-arrestin-biased CXCR3-mediated inflammation is dependent on receptor internalization. Our work demonstrates that differential subcellular signaling is critical to the overall biased response observed at CXCR3, which has important implications for drugs targeting chemokine receptors and other GPCRs.

Suggested Citation

  • Dylan Scott Eiger & Noelia Boldizsar & Christopher Cole Honeycutt & Julia Gardner & Stephen Kirchner & Chloe Hicks & Issac Choi & Uyen Pham & Kevin Zheng & Anmol Warman & Jeffrey S. Smith & Jennifer Y, 2022. "Location bias contributes to functionally selective responses of biased CXCR3 agonists," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33569-2
    DOI: 10.1038/s41467-022-33569-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33569-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33569-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Naomi R. Latorraca & Jason K. Wang & Brian Bauer & Raphael J. L. Townshend & Scott A. Hollingsworth & Julia E. Olivieri & H. Eric Xu & Martha E. Sommer & Ron O. Dror, 2018. "Molecular mechanism of GPCR-mediated arrestin activation," Nature, Nature, vol. 557(7705), pages 452-456, May.
    2. Manuel Grundmann & Nicole Merten & Davide Malfacini & Asuka Inoue & Philip Preis & Katharina Simon & Nelly Rüttiger & Nicole Ziegler & Tobias Benkel & Nina Katharina Schmitt & Satoru Ishida & Ines Mül, 2018. "Lack of beta-arrestin signaling in the absence of active G proteins," Nature Communications, Nature, vol. 9(1), pages 1-16, December.
    3. Punita Kumari & Ashish Srivastava & Ramanuj Banerjee & Eshan Ghosh & Pragya Gupta & Ravi Ranjan & Xin Chen & Bhagyashri Gupta & Charu Gupta & Deepika Jaiman & Arun K. Shukla, 2016. "Functional competence of a partially engaged GPCR–β-arrestin complex," Nature Communications, Nature, vol. 7(1), pages 1-16, December.
    4. Roshanak Irannejad & Jin C. Tomshine & Jon R. Tomshine & Michael Chevalier & Jacob P. Mahoney & Jan Steyaert & Søren G. F. Rasmussen & Roger K. Sunahara & Hana El-Samad & Bo Huang & Mark von Zastrow, 2013. "Conformational biosensors reveal GPCR signalling from endosomes," Nature, Nature, vol. 495(7442), pages 534-538, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shane C. Wright & Aikaterini Motso & Stefania Koutsilieri & Christian M. Beusch & Pierre Sabatier & Alessandro Berghella & Élodie Blondel-Tepaz & Kimberley Mangenot & Ioannis Pittarokoilis & Despoina-, 2023. "GLP-1R signaling neighborhoods associate with the susceptibility to adverse drug reactions of incretin mimetics," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mithu Baidya & Madhu Chaturvedi & Hemlata Dwivedi-Agnihotri & Ashutosh Ranjan & Dominic Devost & Yoon Namkung & Tomasz Maciej Stepniewski & Shubhi Pandey & Minakshi Baruah & Bhanupriya Panigrahi & Par, 2022. "Allosteric modulation of GPCR-induced β-arrestin trafficking and signaling by a synthetic intrabody," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    2. Yutaro Shiraishi & Yutaka Kofuku & Takumi Ueda & Shubhi Pandey & Hemlata Dwivedi-Agnihotri & Arun K. Shukla & Ichio Shimada, 2021. "Biphasic activation of β-arrestin 1 upon interaction with a GPCR revealed by methyl-TROSY NMR," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Harrison M. York & Kunaal Joshi & Charles S. Wright & Laura Z. Kreplin & Samuel J. Rodgers & Ullhas K. Moorthi & Hetvi Gandhi & Abhishek Patil & Christina A. Mitchell & Srividya Iyer-Biswas & Senthil , 2023. "Deterministic early endosomal maturations emerge from a stochastic trigger-and-convert mechanism," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Shane C. Wright & Aikaterini Motso & Stefania Koutsilieri & Christian M. Beusch & Pierre Sabatier & Alessandro Berghella & Élodie Blondel-Tepaz & Kimberley Mangenot & Ioannis Pittarokoilis & Despoina-, 2023. "GLP-1R signaling neighborhoods associate with the susceptibility to adverse drug reactions of incretin mimetics," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Tobias Benkel & Mirjam Zimmermann & Julian Zeiner & Sergi Bravo & Nicole Merten & Victor Jun Yu Lim & Edda Sofie Fabienne Matthees & Julia Drube & Elke Miess-Tanneberg & Daniela Malan & Martyna Szpako, 2022. "How Carvedilol activates β2-adrenoceptors," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    6. Parishmita Sarma & Carlo Marion C. Carino & Deeksha Seetharama & Shubhi Pandey & Hemlata Dwivedi-Agnihotri & Xue Rui & Yubo Cao & Kouki Kawakami & Poonam Kumari & Yu-Chih Chen & Kathryn E. Luker & Pre, 2023. "Molecular insights into intrinsic transducer-coupling bias in the CXCR4-CXCR7 system," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Evi Kostenis & Jesus Gomeza & Elke Miess-Tanneberg & Nina Kathleen Blum & Tobias Benkel & Andy Chevigné & Carsten Hoffmann & Peter Kolb & Viacheslav Nikolaev & Maria Waldhoer & Martyna Szpakowska & As, 2023. "Reply to: How carvedilol does not activate β2-adrenoceptors," Nature Communications, Nature, vol. 14(1), pages 1-3, December.
    8. Raphael S. Haider & Edda S. F. Matthees & Julia Drube & Mona Reichel & Ulrike Zabel & Asuka Inoue & Andy Chevigné & Cornelius Krasel & Xavier Deupi & Carsten Hoffmann, 2022. "β-arrestin1 and 2 exhibit distinct phosphorylation-dependent conformations when coupling to the same GPCR in living cells," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    9. Julian Brands & Sergi Bravo & Lars Jürgenliemke & Lukas Grätz & Hannes Schihada & Fabian Frechen & Judith Alenfelder & Cy Pfeil & Paul Georg Ohse & Suzune Hiratsuka & Kouki Kawakami & Luna C. Schmacke, 2024. "A molecular mechanism to diversify Ca2+ signaling downstream of Gs protein-coupled receptors," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    10. Baptiste Fischer & Tomasz Uchański & Aidana Sheryazdanova & Simon Gonzalez & Alexander N. Volkov & Elke Brosens & Thomas Zögg & Valentina Kalichuk & Steven Ballet & Wim Versées & Anna A. Sablina & Els, 2024. "Allosteric nanobodies to study the interactions between SOS1 and RAS," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Junke Liu & Hengmin Tang & Chanjuan Xu & Shengnan Zhou & Xunying Zhu & Yuanyuan Li & Laurent Prézeau & Tao Xu & Jean-Philippe Pin & Philippe Rondard & Wei Ji & Jianfeng Liu, 2022. "Biased signaling due to oligomerization of the G protein-coupled platelet-activating factor receptor," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    12. Daniel T. D. Jones & Andrew N. Dates & Shaun D. Rawson & Maggie M. Burruss & Colin H. Lipper & Stephen C. Blacklow, 2023. "Tethered agonist activated ADGRF1 structure and signalling analysis reveal basis for G protein coupling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Yulong Gong & Bingyuan Yang & Dingdong Zhang & Yue Zhang & Zihan Tang & Liu Yang & Katie C. Coate & Linlin Yin & Brittney A. Covington & Ravi S. Patel & Walter A. Siv & Katelyn Sellick & Matthew Shou , 2023. "Hyperaminoacidemia induces pancreatic α cell proliferation via synergism between the mTORC1 and CaSR-Gq signaling pathways," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    14. Amal El Daibani & Joseph M. Paggi & Kuglae Kim & Yianni D. Laloudakis & Petr Popov & Sarah M. Bernhard & Brian E. Krumm & Reid H. J. Olsen & Jeffrey Diberto & F. Ivy Carroll & Vsevolod Katritch & Bern, 2023. "Molecular mechanism of biased signaling at the kappa opioid receptor," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Alexei Sirbu & Marc Bathe-Peters & Jothi L. M. Kumar & Asuka Inoue & Martin J. Lohse & Paolo Annibale, 2024. "Cell swelling enhances ligand-driven β-adrenergic signaling," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33569-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.