IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54836-4.html
   My bibliography  Save this article

Conformational coupling between extracellular and transmembrane domains modulates holo-adhesion GPCR function

Author

Listed:
  • Szymon P. Kordon

    (The University of Chicago
    The University of Chicago
    University of Chicago
    University of Chicago)

  • Kristina Cechova

    (Northwestern University)

  • Sumit J. Bandekar

    (The University of Chicago
    The University of Chicago
    University of Chicago
    University of Chicago)

  • Katherine Leon

    (The University of Chicago
    The University of Chicago
    University of Chicago)

  • Przemysław Dutka

    (The University of Chicago
    Genentech)

  • Gracie Siffer

    (Northwestern University)

  • Anthony A. Kossiakoff

    (The University of Chicago)

  • Reza Vafabakhsh

    (Northwestern University)

  • Demet Araç

    (The University of Chicago
    The University of Chicago
    University of Chicago
    University of Chicago)

Abstract

Adhesion G Protein-Coupled Receptors (aGPCRs) are key cell-adhesion molecules involved in numerous physiological functions. aGPCRs have large multi-domain extracellular regions (ECRs) containing a conserved GAIN domain that precedes their seven-pass transmembrane domain (7TM). Ligand binding and mechanical force applied on the ECR regulate receptor function. However, how the ECR communicates with the 7TM remains elusive, because the relative orientation and dynamics of the ECR and 7TM within a holoreceptor is unclear. Here, we describe the cryo-EM reconstruction of an aGPCR, Latrophilin3/ADGRL3, and reveal that the GAIN domain adopts a parallel orientation to the transmembrane region and has constrained movement. Single-molecule FRET experiments unveil three slow-exchanging FRET states of the ECR relative to the transmembrane region within the holoreceptor. GAIN-targeted antibodies, and cancer-associated mutations at the GAIN-7TM interface, alter FRET states, cryo-EM conformations, and receptor signaling. Altogether, this data demonstrates conformational and functional coupling between the ECR and 7TM, suggesting an ECR-mediated mechanism for aGPCR activation.

Suggested Citation

  • Szymon P. Kordon & Kristina Cechova & Sumit J. Bandekar & Katherine Leon & Przemysław Dutka & Gracie Siffer & Anthony A. Kossiakoff & Reza Vafabakhsh & Demet Araç, 2024. "Conformational coupling between extracellular and transmembrane domains modulates holo-adhesion GPCR function," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54836-4
    DOI: 10.1038/s41467-024-54836-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54836-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54836-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Moritz Pfreundschuh & David Alsteens & Ralph Wieneke & Cheng Zhang & Shaun R. Coughlin & Robert Tampé & Brian K. Kobilka & Daniel J. Müller, 2015. "Identifying and quantifying two ligand-binding sites while imaging native human membrane receptors by AFM," Nature Communications, Nature, vol. 6(1), pages 1-7, December.
    2. Xiangli Qu & Na Qiu & Mu Wang & Bingjie Zhang & Juan Du & Zhiwei Zhong & Wei Xu & Xiaojing Chu & Limin Ma & Cuiying Yi & Shuo Han & Wenqing Shui & Qiang Zhao & Beili Wu, 2022. "Structural basis of tethered agonism of the adhesion GPCRs ADGRD1 and ADGRF1," Nature, Nature, vol. 604(7907), pages 779-785, April.
    3. Michael R. Schamber & Reza Vafabakhsh, 2022. "Mechanism of sensitivity modulation in the calcium-sensing receptor via electrostatic tuning," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Katherine Leon & Rebecca L. Cunningham & Joshua A. Riback & Ezra Feldman & Jingxian Li & Tobin R. Sosnick & Minglei Zhao & Kelly R. Monk & Demet Araç, 2020. "Structural basis for adhesion G protein-coupled receptor Gpr126 function," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    5. Bryan Faust & Christian B. Billesbølle & Carl-Mikael Suomivuori & Isha Singh & Kaihua Zhang & Nicholas Hoppe & Antonio F. M. Pinto & Jolene K. Diedrich & Yagmur Muftuoglu & Mariusz W. Szkudlinski & Al, 2022. "Autoantibody mimicry of hormone action at the thyrotropin receptor," Nature, Nature, vol. 609(7928), pages 846-853, September.
    6. Tai-Ying Chu & Céline Zheng-Gérard & Kuan-Yeh Huang & Yu-Chi Chang & Ying-Wen Chen & Kuan-Yu I & Yu-Ling Lo & Nien-Yi Chiang & Hsin-Yi Chen & Martin Stacey & Siamon Gordon & Wen-Yi Tseng & Chiao-Yin S, 2022. "GPR97 triggers inflammatory processes in human neutrophils via a macromolecular complex upstream of PAR2 activation," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    7. Yu-Qi Ping & Peng Xiao & Fan Yang & Ru-Jia Zhao & Sheng-Chao Guo & Xu Yan & Xiang Wu & Chao Zhang & Yan Lu & Fenghui Zhao & Fulai Zhou & Yue-Tong Xi & Wanchao Yin & Feng-Zhen Liu & Dong-Fang He & Dao-, 2022. "Structural basis for the tethered peptide activation of adhesion GPCRs," Nature, Nature, vol. 604(7907), pages 763-770, April.
    8. Shuai Wang & Chelsea DeLeon & Wenfei Sun & Stephen R. Quake & Bryan L. Roth & Thomas C. Südhof, 2024. "Alternative splicing of latrophilin-3 controls synapse formation," Nature, Nature, vol. 626(7997), pages 128-135, February.
    9. Szymon P. Kordon & Przemysław Dutka & Justyna M. Adamska & Sumit J. Bandekar & Katherine Leon & Satchal K. Erramilli & Brock Adams & Jingxian Li & Anthony A. Kossiakoff & Demet Araç, 2023. "Isoform- and ligand-specific modulation of the adhesion GPCR ADGRL3/Latrophilin3 by a synthetic binder," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Peng Xiao & Shengchao Guo & Xin Wen & Qing-Tao He & Hui Lin & Shen-Ming Huang & Lu Gou & Chao Zhang & Zhao Yang & Ya-Ni Zhong & Chuan-Cheng Yang & Yu Li & Zheng Gong & Xiao-Na Tao & Zhi-Shuai Yang & Y, 2022. "Tethered peptide activation mechanism of the adhesion GPCRs ADGRG2 and ADGRG4," Nature, Nature, vol. 604(7907), pages 771-778, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Szymon P. Kordon & Przemysław Dutka & Justyna M. Adamska & Sumit J. Bandekar & Katherine Leon & Satchal K. Erramilli & Brock Adams & Jingxian Li & Anthony A. Kossiakoff & Demet Araç, 2023. "Isoform- and ligand-specific modulation of the adhesion GPCR ADGRL3/Latrophilin3 by a synthetic binder," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Florian Seufert & Guillermo Pérez-Hernández & Gáspár Pándy-Szekeres & Ramon Guixà-González & Tobias Langenhan & David E. Gloriam & Peter W. Hildebrand, 2025. "Generic residue numbering of the GAIN domain of adhesion GPCRs," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    3. Daniel T. D. Jones & Andrew N. Dates & Shaun D. Rawson & Maggie M. Burruss & Colin H. Lipper & Stephen C. Blacklow, 2023. "Tethered agonist activated ADGRF1 structure and signalling analysis reveal basis for G protein coupling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Xinyan Zhu & Yu Qian & Xiaowan Li & Zhenmei Xu & Ruixue Xia & Na Wang & Jiale Liang & Han Yin & Anqi Zhang & Changyou Guo & Guangfu Wang & Yuanzheng He, 2022. "Structural basis of adhesion GPCR GPR110 activation by stalk peptide and G-proteins coupling," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Tai-Ying Chu & Céline Zheng-Gérard & Kuan-Yeh Huang & Yu-Chi Chang & Ying-Wen Chen & Kuan-Yu I & Yu-Ling Lo & Nien-Yi Chiang & Hsin-Yi Chen & Martin Stacey & Siamon Gordon & Wen-Yi Tseng & Chiao-Yin S, 2022. "GPR97 triggers inflammatory processes in human neutrophils via a macromolecular complex upstream of PAR2 activation," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    6. Jia Duan & Peiyu Xu & Huibing Zhang & Xiaodong Luan & Jiaqi Yang & Xinheng He & Chunyou Mao & Dan-Dan Shen & Yujie Ji & Xi Cheng & Hualiang Jiang & Yi Jiang & Shuyang Zhang & Yan Zhang & H. Eric Xu, 2023. "Mechanism of hormone and allosteric agonist mediated activation of follicle stimulating hormone receptor," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Lu Wang & Fangzheng Hu & Qianqian Cui & Huarui Qiao & Lingyun Li & Tengjie Geng & Yuying Li & Zengchao Sun & Siyu Zhou & Zhongyun Lan & Shaojue Guo & Ying Hu & Jiqiu Wang & Qilun Yang & Zenan Wang & Y, 2025. "Structural insights into the LGR4-RSPO2-ZNRF3 complexes regulating WNT/β-catenin signaling," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    8. Dawei Sun & Yonglian Sun & Eric Janezic & Tricia Zhou & Matthew Johnson & Caleigh Azumaya & Sigrid Noreng & Cecilia Chiu & Akiko Seki & Teresita L. Arenzana & John M. Nicoludis & Yongchang Shi & Baome, 2023. "Structural basis of antibody inhibition and chemokine activation of the human CC chemokine receptor 8," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Xuan Zhang & Guibing Liu & Ya-Ni Zhong & Ru Zhang & Chuan-Cheng Yang & Canyang Niu & Xuanyu Pu & Jingjing Sun & Tianyao Zhang & Lejin Yang & Chao Zhang & Xiu Li & Xinyuan Shen & Peng Xiao & Jin-Peng S, 2024. "Structural basis of ligand recognition and activation of the histamine receptor family," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    10. Jianying Zhu & Qi Zhang & Hui Zhang & Zuoqiang Shi & Mingxu Hu & Chenglong Bao, 2023. "A minority of final stacks yields superior amplitude in single-particle cryo-EM," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Xiangyu Ma & Li-Nan Chen & Menghui Liao & Liyan Zhang & Kun Xi & Jiamin Guo & Cangsong Shen & Dan-Dan Shen & Pengjun Cai & Qingya Shen & Jieyu Qi & Huibing Zhang & Shao-Kun Zang & Ying-Jun Dong & Luwe, 2024. "Molecular insights into the activation mechanism of GPR156 in maintaining auditory function," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    12. Jiale Liang & Asuka Inoue & Tatsuya Ikuta & Ruixue Xia & Na Wang & Kouki Kawakami & Zhenmei Xu & Yu Qian & Xinyan Zhu & Anqi Zhang & Changyou Guo & Zhiwei Huang & Yuanzheng He, 2023. "Structural basis of lysophosphatidylserine receptor GPR174 ligand recognition and activation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54836-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.