IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-022-35705-4.html
   My bibliography  Save this article

Hyperaminoacidemia induces pancreatic α cell proliferation via synergism between the mTORC1 and CaSR-Gq signaling pathways

Author

Listed:
  • Yulong Gong

    (Vanderbilt University
    Institute of Hydrobiology, Chinese Academy of Sciences)

  • Bingyuan Yang

    (Vanderbilt University)

  • Dingdong Zhang

    (Vanderbilt University
    Nanjing Agricultural University)

  • Yue Zhang

    (Vanderbilt University)

  • Zihan Tang

    (Vanderbilt University)

  • Liu Yang

    (Vanderbilt University)

  • Katie C. Coate

    (Vanderbilt University Medical Center)

  • Linlin Yin

    (Vanderbilt University)

  • Brittney A. Covington

    (Vanderbilt University)

  • Ravi S. Patel

    (Vanderbilt University)

  • Walter A. Siv

    (Vanderbilt University Medical Center)

  • Katelyn Sellick

    (Vanderbilt University Medical Center)

  • Matthew Shou

    (Vanderbilt University Medical Center)

  • Wenhan Chang

    (University of California San Francisco and San Francisco VA Medical Center)

  • E. Danielle Dean

    (Vanderbilt University
    Vanderbilt University Medical Center)

  • Alvin C. Powers

    (Vanderbilt University
    Vanderbilt University Medical Center
    VA Tennessee Valley Healthcare System)

  • Wenbiao Chen

    (Vanderbilt University)

Abstract

Glucagon has emerged as a key regulator of extracellular amino acid (AA) homeostasis. Insufficient glucagon signaling results in hyperaminoacidemia, which drives adaptive proliferation of glucagon-producing α cells. Aside from mammalian target of rapamycin complex 1 (mTORC1), the role of other AA sensors in α cell proliferation has not been described. Here, using both genders of mouse islets and glucagon receptor (gcgr)-deficient zebrafish (Danio rerio), we show α cell proliferation requires activation of the extracellular signal-regulated protein kinase (ERK1/2) by the AA-sensitive calcium sensing receptor (CaSR). Inactivation of CaSR dampened α cell proliferation, which was rescued by re-expression of CaSR or activation of Gq, but not Gi, signaling in α cells. CaSR was also unexpectedly necessary for mTORC1 activation in α cells. Furthermore, coactivation of Gq and mTORC1 induced α cell proliferation independent of hyperaminoacidemia. These results reveal another AA-sensitive mediator and identify pathways necessary and sufficient for hyperaminoacidemia-induced α cell proliferation.

Suggested Citation

  • Yulong Gong & Bingyuan Yang & Dingdong Zhang & Yue Zhang & Zihan Tang & Liu Yang & Katie C. Coate & Linlin Yin & Brittney A. Covington & Ravi S. Patel & Walter A. Siv & Katelyn Sellick & Matthew Shou , 2023. "Hyperaminoacidemia induces pancreatic α cell proliferation via synergism between the mTORC1 and CaSR-Gq signaling pathways," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35705-4
    DOI: 10.1038/s41467-022-35705-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35705-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35705-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Manuel Grundmann & Nicole Merten & Davide Malfacini & Asuka Inoue & Philip Preis & Katharina Simon & Nelly Rüttiger & Nicole Ziegler & Tobias Benkel & Nina Katharina Schmitt & Satoru Ishida & Ines Mül, 2018. "Lack of beta-arrestin signaling in the absence of active G proteins," Nature Communications, Nature, vol. 9(1), pages 1-16, December.
    2. Patricia P. Centeno & Amanda Herberger & Hee-Chang Mun & Chialing Tu & Edward F. Nemeth & Wenhan Chang & Arthur D. Conigrave & Donald T. Ward, 2019. "Phosphate acts directly on the calcium-sensing receptor to stimulate parathyroid hormone secretion," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tobias Benkel & Mirjam Zimmermann & Julian Zeiner & Sergi Bravo & Nicole Merten & Victor Jun Yu Lim & Edda Sofie Fabienne Matthees & Julia Drube & Elke Miess-Tanneberg & Daniela Malan & Martyna Szpako, 2022. "How Carvedilol activates β2-adrenoceptors," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    2. Evi Kostenis & Jesus Gomeza & Elke Miess-Tanneberg & Nina Kathleen Blum & Tobias Benkel & Andy Chevigné & Carsten Hoffmann & Peter Kolb & Viacheslav Nikolaev & Maria Waldhoer & Martyna Szpakowska & As, 2023. "Reply to: How carvedilol does not activate β2-adrenoceptors," Nature Communications, Nature, vol. 14(1), pages 1-3, December.
    3. Julian Brands & Sergi Bravo & Lars Jürgenliemke & Lukas Grätz & Hannes Schihada & Fabian Frechen & Judith Alenfelder & Cy Pfeil & Paul Georg Ohse & Suzune Hiratsuka & Kouki Kawakami & Luna C. Schmacke, 2024. "A molecular mechanism to diversify Ca2+ signaling downstream of Gs protein-coupled receptors," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    4. Junke Liu & Hengmin Tang & Chanjuan Xu & Shengnan Zhou & Xunying Zhu & Yuanyuan Li & Laurent Prézeau & Tao Xu & Jean-Philippe Pin & Philippe Rondard & Wei Ji & Jianfeng Liu, 2022. "Biased signaling due to oligomerization of the G protein-coupled platelet-activating factor receptor," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Daniel T. D. Jones & Andrew N. Dates & Shaun D. Rawson & Maggie M. Burruss & Colin H. Lipper & Stephen C. Blacklow, 2023. "Tethered agonist activated ADGRF1 structure and signalling analysis reveal basis for G protein coupling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Dylan Scott Eiger & Noelia Boldizsar & Christopher Cole Honeycutt & Julia Gardner & Stephen Kirchner & Chloe Hicks & Issac Choi & Uyen Pham & Kevin Zheng & Anmol Warman & Jeffrey S. Smith & Jennifer Y, 2022. "Location bias contributes to functionally selective responses of biased CXCR3 agonists," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35705-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.