IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37848-4.html
   My bibliography  Save this article

Motor cortex gates distractor stimulus encoding in sensory cortex

Author

Listed:
  • Zhaoran Zhang

    (University of California Riverside)

  • Edward Zagha

    (University of California Riverside
    University of California Riverside)

Abstract

Suppressing responses to distractor stimuli is a fundamental cognitive function, essential for performing goal-directed tasks. A common framework for the neuronal implementation of distractor suppression is the attenuation of distractor stimuli from early sensory to higher-order processing. However, details of the localization and mechanisms of attenuation are poorly understood. We trained mice to selectively respond to target stimuli in one whisker field and ignore distractor stimuli in the opposite whisker field. During expert task performance, optogenetic inhibition of whisker motor cortex increased the overall tendency to respond and the detection of distractor whisker stimuli. Within sensory cortex, optogenetic inhibition of whisker motor cortex enhanced the propagation of distractor stimuli into target-preferring neurons. Single unit analyses revealed that whisker motor cortex (wMC) decorrelates target and distractor stimulus encoding in target-preferring primary somatosensory cortex (S1) neurons, which likely improves selective target stimulus detection by downstream readers. Moreover, we observed proactive top-down modulation from wMC to S1, through the differential activation of putative excitatory and inhibitory neurons before stimulus onset. Overall, our studies support a contribution of motor cortex to sensory selection, in suppressing behavioral responses to distractor stimuli by gating distractor stimulus propagation within sensory cortex.

Suggested Citation

  • Zhaoran Zhang & Edward Zagha, 2023. "Motor cortex gates distractor stimulus encoding in sensory cortex," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37848-4
    DOI: 10.1038/s41467-023-37848-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37848-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37848-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tirin Moore & Katherine M. Armstrong, 2003. "Selective gating of visual signals by microstimulation of frontal cortex," Nature, Nature, vol. 421(6921), pages 370-373, January.
    2. Ning-long Xu & Mark T. Harnett & Stephen R. Williams & Daniel Huber & Daniel H. O’Connor & Karel Svoboda & Jeffrey C. Magee, 2012. "Nonlinear dendritic integration of sensory and motor input during an active sensing task," Nature, Nature, vol. 492(7428), pages 247-251, December.
    3. Marc Zirnsak & Nicholas A. Steinmetz & Behrad Noudoost & Kitty Z. Xu & Tirin Moore, 2014. "Visual space is compressed in prefrontal cortex before eye movements," Nature, Nature, vol. 507(7493), pages 504-507, March.
    4. Leopoldo Petreanu & Diego A. Gutnisky & Daniel Huber & Ning-long Xu & Dan H. O’Connor & Lin Tian & Loren Looger & Karel Svoboda, 2012. "Activity in motor–sensory projections reveals distributed coding in somatosensation," Nature, Nature, vol. 489(7415), pages 299-303, September.
    5. Jerry L. Chen & Stefano Carta & Joana Soldado-Magraner & Bernard L. Schneider & Fritjof Helmchen, 2013. "Behaviour-dependent recruitment of long-range projection neurons in somatosensory cortex," Nature, Nature, vol. 499(7458), pages 336-340, July.
    6. Yaser Merrikhi & Kelsey Clark & Eddy Albarran & Mohammadbagher Parsa & Marc Zirnsak & Tirin Moore & Behrad Noudoost, 2017. "Spatial working memory alters the efficacy of input to visual cortex," Nature Communications, Nature, vol. 8(1), pages 1-10, April.
    7. Andreas J. Keller & Morgane M. Roth & Massimo Scanziani, 2020. "Feedback generates a second receptive field in neurons of the visual cortex," Nature, Nature, vol. 582(7813), pages 545-549, June.
    8. David M. Schneider & Anders Nelson & Richard Mooney, 2014. "A synaptic and circuit basis for corollary discharge in the auditory cortex," Nature, Nature, vol. 513(7517), pages 189-194, September.
    9. Ralf D. Wimmer & L. Ian Schmitt & Thomas J. Davidson & Miho Nakajima & Karl Deisseroth & Michael M. Halassa, 2015. "Thalamic control of sensory selection in divided attention," Nature, Nature, vol. 526(7575), pages 705-709, October.
    10. David M. Schneider & Janani Sundararajan & Richard Mooney, 2018. "A cortical filter that learns to suppress the acoustic consequences of movement," Nature, Nature, vol. 561(7723), pages 391-395, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto de la Torre-Martinez & Maya Ketzef & Gilad Silberberg, 2023. "Ongoing movement controls sensory integration in the dorsolateral striatum," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Amir Akbarian & Kelsey Clark & Behrad Noudoost & Neda Nategh, 2021. "A sensory memory to preserve visual representations across eye movements," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Simon Weiler & Vahid Rahmati & Marcel Isstas & Johann Wutke & Andreas Walter Stark & Christian Franke & Jürgen Graf & Christian Geis & Otto W. Witte & Mark Hübener & Jürgen Bolz & Troy W. Margrie & Kn, 2024. "A primary sensory cortical interareal feedforward inhibitory circuit for tacto-visual integration," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    4. Mitchell Clough & Ichun Anderson Chen & Seong-Wook Park & Allison M. Ahrens & Jeffrey N. Stirman & Spencer L. Smith & Jerry L. Chen, 2021. "Flexible simultaneous mesoscale two-photon imaging of neural activity at high speeds," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    5. Evan S. Schaffer & Neeli Mishra & Matthew R. Whiteway & Wenze Li & Michelle B. Vancura & Jason Freedman & Kripa B. Patel & Venkatakaushik Voleti & Liam Paninski & Elizabeth M. C. Hillman & L. F. Abbot, 2023. "The spatial and temporal structure of neural activity across the fly brain," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Matteo Farinella & Daniel T Ruedt & Padraig Gleeson & Frederic Lanore & R Angus Silver, 2014. "Glutamate-Bound NMDARs Arising from In Vivo-like Network Activity Extend Spatio-temporal Integration in a L5 Cortical Pyramidal Cell Model," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-21, April.
    7. Thomas Miconi & Rufin VanRullen, 2016. "A Feedback Model of Attention Explains the Diverse Effects of Attention on Neural Firing Rates and Receptive Field Structure," PLOS Computational Biology, Public Library of Science, vol. 12(2), pages 1-18, February.
    8. Anthony Renard & Evan R. Harrell & Brice Bathellier, 2022. "Olfactory modulation of barrel cortex activity during active whisking and passive whisker stimulation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Yichen Zhang & Gan He & Lei Ma & Xiaofei Liu & J. J. Johannes Hjorth & Alexander Kozlov & Yutao He & Shenjian Zhang & Jeanette Hellgren Kotaleski & Yonghong Tian & Sten Grillner & Kai Du & Tiejun Huan, 2023. "A GPU-based computational framework that bridges neuron simulation and artificial intelligence," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    10. Mehrabbeik, Mahtab & Shams-Ahmar, Mohammad & Levine, Alexandra T. & Jafari, Sajad & Merrikhi, Yaser, 2022. "Distinctive nonlinear dimensionality of neural spiking activity in extrastriate cortex during spatial working memory; a Higuchi fractal analysis," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    11. Masashi Hasegawa & Ziyan Huang & Ricardo Paricio-Montesinos & Jan Gründemann, 2024. "Network state changes in sensory thalamus represent learned outcomes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Baiwei Liu & Anna C. Nobre & Freek van Ede, 2022. "Functional but not obligatory link between microsaccades and neural modulation by covert spatial attention," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Zhenrui Liao & Kevin C. Gonzalez & Deborah M. Li & Catalina M. Yang & Donald Holder & Natalie E. McClain & Guofeng Zhang & Stephen W. Evans & Mariya Chavarha & Jane Simko & Christopher D. Makinson & M, 2024. "Functional architecture of intracellular oscillations in hippocampal dendrites," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    14. Joji Tsunada & Xiaoqin Wang & Steven J. Eliades, 2024. "Multiple processes of vocal sensory-motor interaction in primate auditory cortex," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    15. Francisco García-Rosales & Luciana López-Jury & Eugenia González-Palomares & Johannes Wetekam & Yuranny Cabral-Calderín & Ava Kiai & Manfred Kössl & Julio C. Hechavarría, 2022. "Echolocation-related reversal of information flow in a cortical vocalization network," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    16. Jacob A. Westerberg & Jeffrey D. Schall & Geoffrey F. Woodman & Alexander Maier, 2023. "Feedforward attentional selection in sensory cortex," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    17. Gal Atlan & Noa Matosevich & Noa Peretz-Rivlin & Idit Marsh-Yvgi & Noam Zelinger & Eden Chen & Timna Kleinman & Noa Bleistein & Efrat Sheinbach & Maya Groysman & Yuval Nir & Ami Citri, 2024. "Claustrum neurons projecting to the anterior cingulate restrict engagement during sleep and behavior," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. Jeroen Atsma & Femke Maij & Mathieu Koppen & David E Irwin & W Pieter Medendorp, 2016. "Causal Inference for Spatial Constancy across Saccades," PLOS Computational Biology, Public Library of Science, vol. 12(3), pages 1-20, March.
    19. Noel Federman & Sebastián A. Romano & Macarena Amigo-Duran & Lucca Salomon & Antonia Marin-Burgin, 2024. "Acquisition of non-olfactory encoding improves odour discrimination in olfactory cortex," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    20. Santarnecchi, Emiliano & Emmendorfer, Alexandra & Pascual-Leone, Alvaro, 2017. "Dissecting the parieto-frontal correlates of fluid intelligence: A comprehensive ALE meta-analysis study," Intelligence, Elsevier, vol. 63(C), pages 9-28.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37848-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.