IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56125-0.html
   My bibliography  Save this article

Syngap1 promotes cognitive function through regulation of cortical sensorimotor dynamics

Author

Listed:
  • Thomas Vaissiere

    (The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology)

  • Sheldon D. Michaelson

    (The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology)

  • Thomas Creson

    (The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology)

  • Jessie Goins

    (The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology)

  • Daniel Fürth

    (Uppsala University)

  • Diana Balazsfi

    (The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology)

  • Camilo Rojas

    (The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology)

  • Randall Golovin

    (The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology)

  • Konstantinos Meletis

    (Karolinska Institute)

  • Courtney A. Miller

    (The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology
    UF Scripps Biomedical Research)

  • Daniel O’Connor

    (The Johns Hopkins University School of Medicine)

  • Lorenzo Fontolan

    (Turing Centre for Living Systems)

  • Gavin Rumbaugh

    (The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology)

Abstract

Perception, a cognitive construct, emerges through sensorimotor integration (SMI). The genetic mechanisms that shape SMI required for perception are unknown. Here, we demonstrate in mice that expression of the autism/intellectual disability gene, Syngap1, in cortical excitatory neurons is required for the formation of somatomotor networks that promote SMI-mediated perception. Cortical Syngap1 expression was necessary and sufficient for setting tactile sensitivity, sustaining tactile object exploration, and promoting tactile learning. Mice with deficient Syngap1 expression exhibited impaired neural dynamics induced by exploratory touches within a cortical-thalamic network that promotes attention and perception. Disrupted neuronal dynamics were associated with circuit-specific long-range synaptic connectivity abnormalities. Our data support a model where autonomous Syngap1 expression in cortical excitatory neurons promotes cognitive abilities through the assembly of long-range circuits that integrate temporally-overlapping sensory and motor signals, a process that promotes perception and attention. These data provide systems-level insights into the robust association between Syngap1 expression and cognitive ability.

Suggested Citation

  • Thomas Vaissiere & Sheldon D. Michaelson & Thomas Creson & Jessie Goins & Daniel Fürth & Diana Balazsfi & Camilo Rojas & Randall Golovin & Konstantinos Meletis & Courtney A. Miller & Daniel O’Connor &, 2025. "Syngap1 promotes cognitive function through regulation of cortical sensorimotor dynamics," Nature Communications, Nature, vol. 16(1), pages 1-23, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56125-0
    DOI: 10.1038/s41467-025-56125-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56125-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56125-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ning-long Xu & Mark T. Harnett & Stephen R. Williams & Daniel Huber & Daniel H. O’Connor & Karel Svoboda & Jeffrey C. Magee, 2012. "Nonlinear dendritic integration of sensory and motor input during an active sensing task," Nature, Nature, vol. 492(7428), pages 247-251, December.
    2. D. Huber & D. A. Gutnisky & S. Peron & D. H. O’Connor & J. S. Wiegert & L. Tian & T. G. Oertner & L. L. Looger & K. Svoboda, 2012. "Multiple dynamic representations in the motor cortex during sensorimotor learning," Nature, Nature, vol. 484(7395), pages 473-478, April.
    3. Yue-Ting Deng & Bang-Sheng Wu & Liu Yang & Xiao-Yu He & Ju-Jiao Kang & Wei-Shi Liu & Ze-Yu Li & Xin-Rui Wu & Ya-Ru Zhang & Shi-Dong Chen & Yi-Jun Ge & Yu-Yuan Huang & Jian-Feng Feng & Ying Zhu & Qiang, 2024. "Large-scale whole-exome sequencing of neuropsychiatric diseases and traits in 350,770 adults," Nature Human Behaviour, Nature, vol. 8(6), pages 1194-1208, June.
    4. Nathan G Clack & Daniel H O'Connor & Daniel Huber & Leopoldo Petreanu & Andrew Hires & Simon Peron & Karel Svoboda & Eugene W Myers, 2012. "Automated Tracking of Whiskers in Videos of Head Fixed Rodents," PLOS Computational Biology, Public Library of Science, vol. 8(7), pages 1-8, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bettina Voelcker & Ravi Pancholi & Simon Peron, 2022. "Transformation of primary sensory cortical representations from layer 4 to layer 2," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Ravi Pancholi & Lauren Ryan & Simon Peron, 2023. "Learning in a sensory cortical microstimulation task is associated with elevated representational stability," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Suma Chinta & Scott R. Pluta, 2023. "Neural mechanisms for the localization of unexpected external motion," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Mitchell Clough & Ichun Anderson Chen & Seong-Wook Park & Allison M. Ahrens & Jeffrey N. Stirman & Spencer L. Smith & Jerry L. Chen, 2021. "Flexible simultaneous mesoscale two-photon imaging of neural activity at high speeds," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    5. Matteo Farinella & Daniel T Ruedt & Padraig Gleeson & Frederic Lanore & R Angus Silver, 2014. "Glutamate-Bound NMDARs Arising from In Vivo-like Network Activity Extend Spatio-temporal Integration in a L5 Cortical Pyramidal Cell Model," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-21, April.
    6. Aniruddha Das & Sarah Holden & Julie Borovicka & Jacob Icardi & Abigail O’Niel & Ariel Chaklai & Davina Patel & Rushik Patel & Stefanie Kaech Petrie & Jacob Raber & Hod Dana, 2023. "Large-scale recording of neuronal activity in freely-moving mice at cellular resolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Zhaoran Zhang & Edward Zagha, 2023. "Motor cortex gates distractor stimulus encoding in sensory cortex," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Anthony Renard & Evan R. Harrell & Brice Bathellier, 2022. "Olfactory modulation of barrel cortex activity during active whisking and passive whisker stimulation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Yichen Zhang & Gan He & Lei Ma & Xiaofei Liu & J. J. Johannes Hjorth & Alexander Kozlov & Yutao He & Shenjian Zhang & Jeanette Hellgren Kotaleski & Yonghong Tian & Sten Grillner & Kai Du & Tiejun Huan, 2023. "A GPU-based computational framework that bridges neuron simulation and artificial intelligence," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    10. Zhenrui Liao & Kevin C. Gonzalez & Deborah M. Li & Catalina M. Yang & Donald Holder & Natalie E. McClain & Guofeng Zhang & Stephen W. Evans & Mariya Chavarha & Jane Simko & Christopher D. Makinson & M, 2024. "Functional architecture of intracellular oscillations in hippocampal dendrites," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    11. Fan Li & Jazlyn Gallego & Natasha N. Tirko & Jenna Greaser & Derek Bashe & Rudra Patel & Eric Shaker & Grace E. Valkenburg & Alanoud S. Alsubhi & Steven Wellman & Vanshika Singh & Camila Garcia Padill, 2024. "Low-intensity pulsed ultrasound stimulation (LIPUS) modulates microglial activation following intracortical microelectrode implantation," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    12. Shan Shen & Xiaolong Jiang & Federico Scala & Jiakun Fu & Paul Fahey & Dmitry Kobak & Zhenghuan Tan & Na Zhou & Jacob Reimer & Fabian Sinz & Andreas S. Tolias, 2022. "Distinct organization of two cortico-cortical feedback pathways," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    13. Trevor J Wardill & Tsai-Wen Chen & Eric R Schreiter & Jeremy P Hasseman & Getahun Tsegaye & Benjamin F Fosque & Reza Behnam & Brenda C Shields & Melissa Ramirez & Bruce E Kimmel & Rex A Kerr & Vivek J, 2013. "A Neuron-Based Screening Platform for Optimizing Genetically-Encoded Calcium Indicators," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-1, October.
    14. Amir Ghanayim & Hadas Benisty & Avigail Cohen Rimon & Sivan Schwartz & Sally Dabdoob & Shira Lifshitz & Ronen Talmon & Jackie Schiller, 2025. "VTA projections to M1 are essential for reorganization of layer 2-3 network dynamics underlying motor learning," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    15. Nathan G Clack & Daniel H O'Connor & Daniel Huber & Leopoldo Petreanu & Andrew Hires & Simon Peron & Karel Svoboda & Eugene W Myers, 2012. "Automated Tracking of Whiskers in Videos of Head Fixed Rodents," PLOS Computational Biology, Public Library of Science, vol. 8(7), pages 1-8, July.
    16. Xinzheng Zhang & Jianfen Zhang & Junpei Zhong, 2017. "Skill Learning for Intelligent Robot by Perception-Action Integration: A View from Hierarchical Temporal Memory," Complexity, Hindawi, vol. 2017, pages 1-16, November.
    17. Andrea Comba & Syed M. Faisal & Patrick J. Dunn & Anna E. Argento & Todd C. Hollon & Wajd N. Al-Holou & Maria Luisa Varela & Daniel B. Zamler & Gunnar L. Quass & Pierre F. Apostolides & Clifford Abel , 2022. "Spatiotemporal analysis of glioma heterogeneity reveals COL1A1 as an actionable target to disrupt tumor progression," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    18. Hang Zhou & Guo-Qiang Bi & Guosong Liu, 2024. "Intracellular magnesium optimizes transmission efficiency and plasticity of hippocampal synapses by reconfiguring their connectivity," Nature Communications, Nature, vol. 15(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56125-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.