IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50658-6.html
   My bibliography  Save this article

Developmental Cajal-Retzius cell death contributes to the maturation of layer 1 cortical inhibition and somatosensory processing

Author

Listed:
  • Angeliki Damilou

    (University of Zurich
    University of Zürich
    Neuroscience Center Zurich)

  • Linbi Cai

    (University of Zurich
    Neuroscience Center Zurich)

  • Ali Özgür Argunşah

    (University of Zurich
    Neuroscience Center Zurich)

  • Shuting Han

    (Neuroscience Center Zurich
    University of Zurich)

  • George Kanatouris

    (University of Zurich
    Neuroscience Center Zurich)

  • Maria Karatsoli

    (University of Zurich
    University of Zürich
    Neuroscience Center Zurich)

  • Olivia Hanley

    (University of Zurich
    Neuroscience Center Zurich)

  • Lorenzo Gesuita

    (University of Zurich
    Neuroscience Center Zurich)

  • Sepp Kollmorgen

    (University of Zürich)

  • Fritjof Helmchen

    (University of Zürich
    Neuroscience Center Zurich
    University of Zurich)

  • Theofanis Karayannis

    (University of Zurich
    University of Zürich
    Neuroscience Center Zurich)

Abstract

The role of developmental cell death in the formation of brain circuits is not well understood. Cajal-Retzius cells constitute a major transient neuronal population in the mammalian neocortex, which largely disappears at the time of postnatal somatosensory maturation. In this study, we used mouse genetics, anatomical, functional, and behavioral approaches to explore the impact of the early postnatal death of Cajal-Retzius cells in the maturation of the cortical circuit. We find that before their death, Cajal-Retzius cells mainly receive inputs from layer 1 neurons, which can only develop their mature connectivity onto layer 2/3 pyramidal cells after Cajal-Retzius cells disappear. This developmental connectivity progression from layer 1 GABAergic to layer 2/3 pyramidal cells regulates sensory-driven inhibition within, and more so, across cortical columns. Here we show that Cajal-Retzius cell death prevention leads to layer 2/3 hyper-excitability, delayed learning and reduced performance in a multi-whisker-dependent texture discrimination task.

Suggested Citation

  • Angeliki Damilou & Linbi Cai & Ali Özgür Argunşah & Shuting Han & George Kanatouris & Maria Karatsoli & Olivia Hanley & Lorenzo Gesuita & Sepp Kollmorgen & Fritjof Helmchen & Theofanis Karayannis, 2024. "Developmental Cajal-Retzius cell death contributes to the maturation of layer 1 cortical inhibition and somatosensory processing," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50658-6
    DOI: 10.1038/s41467-024-50658-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50658-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50658-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fong Kuan Wong & Kinga Bercsenyi & Varun Sreenivasan & Adrián Portalés & Marian Fernández-Otero & Oscar Marín, 2018. "Pyramidal cell regulation of interneuron survival sculpts cortical networks," Nature, Nature, vol. 557(7707), pages 668-673, May.
    2. Jerry L. Chen & Stefano Carta & Joana Soldado-Magraner & Bernard L. Schneider & Fritjof Helmchen, 2013. "Behaviour-dependent recruitment of long-range projection neurons in somatosensory cortex," Nature, Nature, vol. 499(7458), pages 336-340, July.
    3. Johannes J. Letzkus & Steffen B. E. Wolff & Elisabeth M. M. Meyer & Philip Tovote & Julien Courtin & Cyril Herry & Andreas Lüthi, 2011. "A disinhibitory microcircuit for associative fear learning in the auditory cortex," Nature, Nature, vol. 480(7377), pages 331-335, December.
    4. Sepp Kollmorgen & Richard H. R. Hahnloser & Valerio Mante, 2020. "Nearest neighbours reveal fast and slow components of motor learning," Nature, Nature, vol. 577(7791), pages 526-530, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mitchell Clough & Ichun Anderson Chen & Seong-Wook Park & Allison M. Ahrens & Jeffrey N. Stirman & Spencer L. Smith & Jerry L. Chen, 2021. "Flexible simultaneous mesoscale two-photon imaging of neural activity at high speeds," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    2. Matteo Farinella & Daniel T Ruedt & Padraig Gleeson & Frederic Lanore & R Angus Silver, 2014. "Glutamate-Bound NMDARs Arising from In Vivo-like Network Activity Extend Spatio-temporal Integration in a L5 Cortical Pyramidal Cell Model," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-21, April.
    3. Zhaoran Zhang & Edward Zagha, 2023. "Motor cortex gates distractor stimulus encoding in sensory cortex," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Anthony Renard & Evan R. Harrell & Brice Bathellier, 2022. "Olfactory modulation of barrel cortex activity during active whisking and passive whisker stimulation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Athina Tzovara & Christoph W Korn & Dominik R Bach, 2018. "Human Pavlovian fear conditioning conforms to probabilistic learning," PLOS Computational Biology, Public Library of Science, vol. 14(8), pages 1-21, August.
    6. Roberto de la Torre-Martinez & Maya Ketzef & Gilad Silberberg, 2023. "Ongoing movement controls sensory integration in the dorsolateral striatum," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Robert Legenstein & Wolfgang Maass, 2014. "Ensembles of Spiking Neurons with Noise Support Optimal Probabilistic Inference in a Dynamically Changing Environment," PLOS Computational Biology, Public Library of Science, vol. 10(10), pages 1-27, October.
    8. Christina Mo & Claire McKinnon & S. Murray Sherman, 2024. "A transthalamic pathway crucial for perception," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Yanmei Liu & Jiahe Zhang & Zhishan Jiang & Meiling Qin & Min Xu & Siyu Zhang & Guofen Ma, 2024. "Organization of corticocortical and thalamocortical top-down inputs in the primary visual cortex," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    10. Li-Pao Fang & Na Zhao & Laura C. Caudal & Hsin-Fang Chang & Renping Zhao & Ching-Hsin Lin & Nadine Hainz & Carola Meier & Bernhard Bettler & Wenhui Huang & Anja Scheller & Frank Kirchhoff & Xianshu Ba, 2022. "Impaired bidirectional communication between interneurons and oligodendrocyte precursor cells affects social cognitive behavior," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Deepanjali Dwivedi & Dimitri Dumontier & Mia Sherer & Sherry Lin & Andrea M. C. Mirow & Yanjie Qiu & Qing Xu & Samuel A. Liebman & Djeckby Joseph & Sandeep R. Datta & Gord Fishell & Gabrielle Pouchelo, 2024. "Metabotropic signaling within somatostatin interneurons controls transient thalamocortical inputs during development," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    12. Avishek Paul & Helen McLendon & Veronica Rally & Jon T Sakata & Sarah C Woolley, 2021. "Behavioral discrimination and time-series phenotyping of birdsong performance," PLOS Computational Biology, Public Library of Science, vol. 17(4), pages 1-21, April.
    13. Allen P. F. Chen & Lu Chen & Kaiyo W. Shi & Eileen Cheng & Shaoyu Ge & Qiaojie Xiong, 2023. "Nigrostriatal dopamine modulates the striatal-amygdala pathway in auditory fear conditioning," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Shiva Farashahi & Alireza Soltani, 2021. "Computational mechanisms of distributed value representations and mixed learning strategies," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    15. Xu Zhan & Chao Chen & Longgang Niu & Xinran Du & Ying Lei & Rui Dan & Zhao-Wen Wang & Ping Liu, 2023. "Locomotion modulates olfactory learning through proprioception in C. elegans," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    16. Luke F. Nunnelly & Melissa Campbell & Dylan I. Lee & Patrick Dummer & Guoqiang Gu & Vilas Menon & Edmund Au, 2022. "St18 specifies globus pallidus projection neuron identity in MGE lineage," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    17. Allen P. F. Chen & Jeffrey M. Malgady & Lu Chen & Kaiyo W. Shi & Eileen Cheng & Joshua L. Plotkin & Shaoyu Ge & Qiaojie Xiong, 2022. "Nigrostriatal dopamine pathway regulates auditory discrimination behavior," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    18. Katherine C. Wood & Christopher F. Angeloni & Karmi Oxman & Claudia Clopath & Maria N. Geffen, 2022. "Neuronal activity in sensory cortex predicts the specificity of learning in mice," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50658-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.