IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36608-8.html
   My bibliography  Save this article

Expectation violations enhance neuronal encoding of sensory information in mouse primary visual cortex

Author

Listed:
  • Matthew F. Tang

    (The Australian National University
    Australian Research Council Centre of Excellence for Integrative Brain Function
    The University of Queensland)

  • Ehsan Kheradpezhouh

    (The Australian National University
    Australian Research Council Centre of Excellence for Integrative Brain Function)

  • Conrad C. Y. Lee

    (The Australian National University
    Australian Research Council Centre of Excellence for Integrative Brain Function
    The University of Melbourne)

  • J. Edwin Dickinson

    (The University of Western Australia)

  • Jason B. Mattingley

    (Australian Research Council Centre of Excellence for Integrative Brain Function
    The University of Queensland
    The University of Queensland
    Canadian Institute for Advanced Research (CIFAR))

  • Ehsan Arabzadeh

    (The Australian National University
    Australian Research Council Centre of Excellence for Integrative Brain Function)

Abstract

The response of cortical neurons to sensory stimuli is shaped both by past events (adaptation) and the expectation of future events (prediction). Here we employed a visual stimulus paradigm with different levels of predictability to characterise how expectation influences orientation selectivity in the primary visual cortex (V1) of male mice. We recorded neuronal activity using two-photon calcium imaging (GCaMP6f) while animals viewed sequences of grating stimuli which either varied randomly in their orientations or rotated predictably with occasional transitions to an unexpected orientation. For single neurons and the population, there was significant enhancement in the gain of orientation-selective responses to unexpected gratings. This gain-enhancement for unexpected stimuli was prominent in both awake and anaesthetised mice. We implemented a computational model to demonstrate how trial-to-trial variability in neuronal responses were best characterised when adaptation and expectation effects were combined.

Suggested Citation

  • Matthew F. Tang & Ehsan Kheradpezhouh & Conrad C. Y. Lee & J. Edwin Dickinson & Jason B. Mattingley & Ehsan Arabzadeh, 2023. "Expectation violations enhance neuronal encoding of sensory information in mouse primary visual cortex," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36608-8
    DOI: 10.1038/s41467-023-36608-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36608-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36608-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Miguel Maravall & Rasmus S Petersen & Adrienne L Fairhall & Ehsan Arabzadeh & Mathew E Diamond, 2007. "Shifts in Coding Properties and Maintenance of Information Transmission during Adaptation in Barrel Cortex," PLOS Biology, Public Library of Science, vol. 5(2), pages 1-12, January.
    2. Berens, Philipp, 2009. "CircStat: A MATLAB Toolbox for Circular Statistics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 31(i10).
    3. Cooper A Smout & Matthew F Tang & Marta I Garrido & Jason B Mattingley, 2019. "Attention promotes the neural encoding of prediction errors," PLOS Biology, Public Library of Science, vol. 17(2), pages 1-22, February.
    4. Matthew F. Tang & Lucy Ford & Ehsan Arabzadeh & James T. Enns & Troy A. W. Visser & Jason B. Mattingley, 2020. "Neural dynamics of the attentional blink revealed by encoding orientation selectivity during rapid visual presentation," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    5. David M. Schneider & Janani Sundararajan & Richard Mooney, 2018. "A cortical filter that learns to suppress the acoustic consequences of movement," Nature, Nature, vol. 561(7723), pages 391-395, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tarana Nigam & Caspar M. Schwiedrzik, 2024. "Predictions enable top-down pattern separation in the macaque face-processing hierarchy," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joshua M. Diamond & Julio I. Chapeton & Weizhen Xie & Samantha N. Jackson & Sara K. Inati & Kareem A. Zaghloul, 2024. "Focal seizures induce spatiotemporally organized spiking activity in the human cortex," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Kyerl Park & Yoonsoo Yeo & Kisung Shin & Jeehyun Kwag, 2024. "Egocentric neural representation of geometric vertex in the retrosplenial cortex," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Jennifer B Tennessen & Marla M Holt & Brianna M Wright & M Bradley Hanson & Candice K Emmons & Deborah A Giles & Jeffrey T Hogan & Sheila J Thornton & Volker B Deecke, 2023. "Divergent foraging strategies between populations of sympatric matrilineal killer whales," Behavioral Ecology, International Society for Behavioral Ecology, vol. 34(3), pages 373-386.
    4. Thomas Schreiner & Marit Petzka & Tobias Staudigl & Bernhard P. Staresina, 2023. "Respiration modulates sleep oscillations and memory reactivation in humans," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Zhaoran Zhang & Edward Zagha, 2023. "Motor cortex gates distractor stimulus encoding in sensory cortex," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Thomas Schreiner & Elisabeth Kaufmann & Soheyl Noachtar & Jan-Hinnerk Mehrkens & Tobias Staudigl, 2022. "The human thalamus orchestrates neocortical oscillations during NREM sleep," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    7. Celia M. Gagliardi & Marc E. Normandin & Alexandra T. Keinath & Joshua B. Julian & Matthew R. Lopez & Manuel-Miguel Ramos-Alvarez & Russell A. Epstein & Isabel A. Muzzio, 2024. "Distinct neural mechanisms for heading retrieval and context recognition in the hippocampus during spatial reorientation," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    8. Alireza Saeedi & Kun Wang & Ghazaleh Nikpourian & Andreas Bartels & Nikos K. Logothetis & Nelson K. Totah & Masataka Watanabe, 2024. "Brightness illusions drive a neuronal response in the primary visual cortex under top-down modulation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    9. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    10. Thomas Schreiner & Benjamin J. Griffiths & Merve Kutlu & Christian Vollmar & Elisabeth Kaufmann & Stefanie Quach & Jan Remi & Soheyl Noachtar & Tobias Staudigl, 2024. "Spindle-locked ripples mediate memory reactivation during human NREM sleep," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    11. César Henrique Mattos Pires & Felipe M. Pimenta & Carla A. D'Aquino & Osvaldo R. Saavedra & Xuerui Mao & Arcilan T. Assireu, 2020. "Coastal Wind Power in Southern Santa Catarina, Brazil," Energies, MDPI, vol. 13(19), pages 1-23, October.
    12. Alexis T Baria & Brian Maniscalco & Biyu J He, 2017. "Initial-state-dependent, robust, transient neural dynamics encode conscious visual perception," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-29, November.
    13. Matthijs J. Warrens & Bunga C. Pratiwi, 2016. "Kappa Coefficients for Circular Classifications," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 507-522, October.
    14. Gabriel D Puccini & Albert Compte & Miguel Maravall, 2006. "Stimulus Dependence of Barrel Cortex Directional Selectivity," PLOS ONE, Public Library of Science, vol. 1(1), pages 1-6, December.
    15. Lombard, F. & Hawkins, Douglas M. & Potgieter, Cornelis J., 2017. "Sequential rank CUSUM charts for angular data," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 268-279.
    16. Masataka Sawayama & Shin'ya Nishida, 2018. "Material and shape perception based on two types of intensity gradient information," PLOS Computational Biology, Public Library of Science, vol. 14(4), pages 1-40, April.
    17. Aguiar-Conraria, Luis & Martins, Manuel M.F. & Soares, Maria Joana, 2018. "Estimating the Taylor rule in the time-frequency domain," Journal of Macroeconomics, Elsevier, vol. 57(C), pages 122-137.
    18. Assaf Breska & Leon Y Deouell, 2017. "Neural mechanisms of rhythm-based temporal prediction: Delta phase-locking reflects temporal predictability but not rhythmic entrainment," PLOS Biology, Public Library of Science, vol. 15(2), pages 1-30, February.
    19. Sunny Nigam & Russell Milton & Sorin Pojoga & Valentin Dragoi, 2023. "Adaptive coding across visual features during free-viewing and fixation conditions," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Chinnakkaruppan Adaikkan & Justin Joseph & Georgios Foustoukos & Jun Wang & Denis Polygalov & Roman Boehringer & Steven J. Middleton & Arthur J. Y. Huang & Li-Huei Tsai & Thomas J. McHugh, 2024. "Silencing CA1 pyramidal cells output reveals the role of feedback inhibition in hippocampal oscillations," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36608-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.