IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47459-2.html
   My bibliography  Save this article

A primary sensory cortical interareal feedforward inhibitory circuit for tacto-visual integration

Author

Listed:
  • Simon Weiler

    (University College London)

  • Vahid Rahmati

    (Department of Neurology)

  • Marcel Isstas

    (Institute of General Zoology and Animal Physiology)

  • Johann Wutke

    (Department of Neurology)

  • Andreas Walter Stark

    (Institute of Applied Optics and Biophysics)

  • Christian Franke

    (Institute of Applied Optics and Biophysics
    Jena Center for Soft Matter
    Abbe Center of Photonics)

  • Jürgen Graf

    (Department of Neurology)

  • Christian Geis

    (Department of Neurology)

  • Otto W. Witte

    (Department of Neurology)

  • Mark Hübener

    (Max Planck Institute for Biological Intelligence)

  • Jürgen Bolz

    (Institute of General Zoology and Animal Physiology)

  • Troy W. Margrie

    (University College London)

  • Knut Holthoff

    (Department of Neurology)

  • Manuel Teichert

    (Department of Neurology)

Abstract

Tactile sensation and vision are often both utilized for the exploration of objects that are within reach though it is not known whether or how these two distinct sensory systems combine such information. Here in mice, we used a combination of stereo photogrammetry for 3D reconstruction of the whisker array, brain-wide anatomical tracing and functional connectivity analysis to explore the possibility of tacto-visual convergence in sensory space and within the circuitry of the primary visual cortex (VISp). Strikingly, we find that stimulation of the contralateral whisker array suppresses visually evoked activity in a tacto-visual sub-region of VISp whose visual space representation closely overlaps with the whisker search space. This suppression is mediated by local fast-spiking interneurons that receive a direct cortico-cortical input predominantly from layer 6 neurons located in the posterior primary somatosensory barrel cortex (SSp-bfd). These data demonstrate functional convergence within and between two primary sensory cortical areas for multisensory object detection and recognition.

Suggested Citation

  • Simon Weiler & Vahid Rahmati & Marcel Isstas & Johann Wutke & Andreas Walter Stark & Christian Franke & Jürgen Graf & Christian Geis & Otto W. Witte & Mark Hübener & Jürgen Bolz & Troy W. Margrie & Kn, 2024. "A primary sensory cortical interareal feedforward inhibitory circuit for tacto-visual integration," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47459-2
    DOI: 10.1038/s41467-024-47459-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47459-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47459-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lauri Nurminen & Sam Merlin & Maryam Bijanzadeh & Frederick Federer & Alessandra Angelucci, 2018. "Top-down feedback controls spatial summation and response amplitude in primate visual cortex," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    2. Michael Lohse & Johannes C. Dahmen & Victoria M. Bajo & Andrew J. King, 2021. "Subcortical circuits mediate communication between primary sensory cortical areas in mice," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    3. Anthony Renard & Evan R. Harrell & Brice Bathellier, 2022. "Olfactory modulation of barrel cortex activity during active whisking and passive whisker stimulation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Christian J. Niedworok & Alexander P. Y. Brown & M. Jorge Cardoso & Pavel Osten & Sebastien Ourselin & Marc Modat & Troy W. Margrie, 2016. "aMAP is a validated pipeline for registration and segmentation of high-resolution mouse brain data," Nature Communications, Nature, vol. 7(1), pages 1-9, September.
    5. Rasmus S Petersen & Andrea Colins Rodriguez & Mathew H Evans & Dario Campagner & Michaela S E Loft, 2020. "A system for tracking whisker kinematics and whisker shape in three dimensions," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-24, January.
    6. Andreas J. Keller & Morgane M. Roth & Massimo Scanziani, 2020. "Feedback generates a second receptive field in neurons of the visual cortex," Nature, Nature, vol. 582(7813), pages 545-549, June.
    7. Leopoldo Petreanu & Tianyi Mao & Scott M. Sternson & Karel Svoboda, 2009. "The subcellular organization of neocortical excitatory connections," Nature, Nature, vol. 457(7233), pages 1142-1145, February.
    8. Marc O. Ernst & Martin S. Banks, 2002. "Humans integrate visual and haptic information in a statistically optimal fashion," Nature, Nature, vol. 415(6870), pages 429-433, January.
    9. Adam L Tyson & Charly V Rousseau & Christian J Niedworok & Sepiedeh Keshavarzi & Chryssanthi Tsitoura & Lee Cossell & Molly Strom & Troy W Margrie, 2021. "A deep learning algorithm for 3D cell detection in whole mouse brain image datasets," PLOS Computational Biology, Public Library of Science, vol. 17(5), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan C. Frankowski & Alexa Tierno & Shreya Pavani & Quincy Cao & David C. Lyon & Robert F. Hunt, 2022. "Brain-wide reconstruction of inhibitory circuits after traumatic brain injury," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Shan Shen & Xiaolong Jiang & Federico Scala & Jiakun Fu & Paul Fahey & Dmitry Kobak & Zhenghuan Tan & Na Zhou & Jacob Reimer & Fabian Sinz & Andreas S. Tolias, 2022. "Distinct organization of two cortico-cortical feedback pathways," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Hironobu Osaki & Moeko Kanaya & Yoshifumi Ueta & Mariko Miyata, 2022. "Distinct nociception processing in the dysgranular and barrel regions of the mouse somatosensory cortex," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Catarina Mendonça & Pietro Mandelli & Ville Pulkki, 2016. "Modeling the Perception of Audiovisual Distance: Bayesian Causal Inference and Other Models," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-18, December.
    5. Wen-Hao Zhang & Si Wu & Krešimir Josić & Brent Doiron, 2023. "Sampling-based Bayesian inference in recurrent circuits of stochastic spiking neurons," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    6. Adam N Sanborn & Ulrik R Beierholm, 2016. "Fast and Accurate Learning When Making Discrete Numerical Estimates," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-28, April.
    7. Seth W. Egger & Stephen G. Lisberger, 2022. "Neural structure of a sensory decoder for motor control," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Alireza Saeedi & Kun Wang & Ghazaleh Nikpourian & Andreas Bartels & Nikos K. Logothetis & Nelson K. Totah & Masataka Watanabe, 2024. "Brightness illusions drive a neuronal response in the primary visual cortex under top-down modulation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    9. Sergio Luengo-Sanchez & Isabel Fernaud-Espinosa & Concha Bielza & Ruth Benavides-Piccione & Pedro Larrañaga & Javier DeFelipe, 2018. "3D morphology-based clustering and simulation of human pyramidal cell dendritic spines," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-22, June.
    10. Xiaochen Zhang & Lingling Jin & Jie Zhao & Jiazhen Li & Ding-Bang Luh & Tiansheng Xia, 2022. "The Influences of Different Sensory Modalities and Cognitive Loads on Walking Navigation: A Preliminary Study," Sustainability, MDPI, vol. 14(24), pages 1-14, December.
    11. Johannes Burge & Priyank Jaini, 2017. "Accuracy Maximization Analysis for Sensory-Perceptual Tasks: Computational Improvements, Filter Robustness, and Coding Advantages for Scaled Additive Noise," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-32, February.
    12. Yingjie Lai & Chaemoon Yoo & Xiaomin Zhou & Younghwan Pan, 2023. "Elements of Food Service Design for Low-Carbon Tourism-Based on Dine-In Tourist Behavior and Attitudes in China," Sustainability, MDPI, vol. 15(9), pages 1-21, May.
    13. Brocas, Isabelle & Carrillo, Juan D., 2012. "From perception to action: An economic model of brain processes," Games and Economic Behavior, Elsevier, vol. 75(1), pages 81-103.
    14. Jean-François Patri & Pascal Perrier & Jean-Luc Schwartz & Julien Diard, 2018. "What drives the perceptual change resulting from speech motor adaptation? Evaluation of hypotheses in a Bayesian modeling framework," PLOS Computational Biology, Public Library of Science, vol. 14(1), pages 1-38, January.
    15. Florent Meyniel, 2020. "Brain dynamics for confidence-weighted learning," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-27, June.
    16. Anna Lambrechts & Vincent Walsh & Virginie van Wassenhove, 2013. "Evidence Accumulation in the Magnitude System," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-10, December.
    17. Noelle R B Stiles & Monica Li & Carmel A Levitan & Yukiyasu Kamitani & Shinsuke Shimojo, 2018. "What you saw is what you will hear: Two new illusions with audiovisual postdictive effects," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-22, October.
    18. Elina Stengård & Ronald van den Berg, 2019. "Imperfect Bayesian inference in visual perception," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-27, April.
    19. Lunn, Pete & Duffy, David, 2010. "The Euro Through the Looking-Glass: Perceived Inflation Following the 2002 Currency Changeover," Papers WP338, Economic and Social Research Institute (ESRI).
    20. Igor Linkov & Susan Cormier & Joshua Gold & F. Kyle Satterstrom & Todd Bridges, 2012. "Using Our Brains to Develop Better Policy," Risk Analysis, John Wiley & Sons, vol. 32(3), pages 374-380, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47459-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.