IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35515-8.html
   My bibliography  Save this article

Atomically dispersed golds on degradable zero-valent copper nanocubes augment oxygen driven Fenton-like reaction for effective orthotopic tumor therapy

Author

Listed:
  • Liu-Chun Wang

    (National Cheng Kung University)

  • Li-Chan Chang

    (National Cheng Kung University)

  • Wen-Qi Chen

    (National Cheng Kung University)

  • Yi-Hsin Chien

    (Feng Chia University)

  • Po-Ya Chang

    (National Synchrotron Radiation Research Center)

  • Chih-Wen Pao

    (National Synchrotron Radiation Research Center)

  • Yin-Fen Liu

    (National Cheng Kung University)

  • Hwo-Shuenn Sheu

    (National Synchrotron Radiation Research Center)

  • Wen-Pin Su

    (National Cheng Kung University
    National Cheng Kung University)

  • Chen-Hao Yeh

    (Feng Chia University)

  • Chen-Sheng Yeh

    (National Cheng Kung University)

Abstract

Herein, we employ a galvanic replacement approach to create atomically dispersed Au on degradable zero-valent Cu nanocubes for tumor treatments on female mice. Controlling the addition of precursor HAuCl4 allows for the fabrication of different atomic ratios of AuxCuy. X-ray absorption near edge spectra indicates that Au and Cu are the predominant oxidation states of zero valence. This suggests that the charges of Au and Cu remain unchanged after galvanic replacement. Specifically, Au0.02Cu0.98 composition reveals the enhanced •OH generation following O2 → H2O2 → •OH. The degradable Au0.02Cu0.98 released Cu+ and Cu2+ resulting in oxygen reduction and Fenton-like reactions. Simulation studies indicate that Au single atoms boot zero-valent copper to reveal the catalytic capability of Au0.02Cu0.98 for O2 → H2O2 → •OH as well. Instead of using endogenous H2O2, H2O2 can be sourced from the O2 in the air through the use of nanocubes. Notably, the Au0.02Cu0.98 structure is degradable and renal-clearable.

Suggested Citation

  • Liu-Chun Wang & Li-Chan Chang & Wen-Qi Chen & Yi-Hsin Chien & Po-Ya Chang & Chih-Wen Pao & Yin-Fen Liu & Hwo-Shuenn Sheu & Wen-Pin Su & Chen-Hao Yeh & Chen-Sheng Yeh, 2022. "Atomically dispersed golds on degradable zero-valent copper nanocubes augment oxygen driven Fenton-like reaction for effective orthotopic tumor therapy," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35515-8
    DOI: 10.1038/s41467-022-35515-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35515-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35515-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Felicia R. Lucci & Jilei Liu & Matthew D. Marcinkowski & Ming Yang & Lawrence F. Allard & Maria Flytzani-Stephanopoulos & E. Charles H. Sykes, 2015. "Selective hydrogenation of 1,3-butadiene on platinum–copper alloys at the single-atom limit," Nature Communications, Nature, vol. 6(1), pages 1-8, December.
    2. Guodong Sun & Zhi-Jian Zhao & Rentao Mu & Shenjun Zha & Lulu Li & Sai Chen & Ketao Zang & Jun Luo & Zhenglong Li & Stephen C. Purdy & A. Jeremy Kropf & Jeffrey T. Miller & Liang Zeng & Jinlong Gong, 2018. "Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    3. Xi Zhang & Guoqing Cui & Haisong Feng & Lifang Chen & Hui Wang & Bin Wang & Xin Zhang & Lirong Zheng & Song Hong & Min Wei, 2019. "Platinum–copper single atom alloy catalysts with high performance towards glycerol hydrogenolysis," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hanjie Zhang & Yitong Zhang & Yushi Zhang & Hanyue Li & Meitong Ou & Yongkang Yu & Fan Zhang & Huijuan Yin & Zhuo Mao & Lin Mei, 2024. "Catalytic activity of violet phosphorus-based nanosystems and the role of metabolites in tumor therapy," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunan Li & Lingling Guo & Meng Du & Chen Tian & Gui Zhao & Zhengwu Liu & Zhenye Liang & Kunming Hou & Junxiang Chen & Xi Liu & Luozhen Jiang & Bing Nan & Lina Li, 2024. "Unraveling distinct effects between CuOx and PtCu alloy sites in Pt−Cu bimetallic catalysts for CO oxidation at different temperatures," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Wei Liu & Haisong Feng & Yusen Yang & Yiming Niu & Lei Wang & Pan Yin & Song Hong & Bingsen Zhang & Xin Zhang & Min Wei, 2022. "Highly-efficient RuNi single-atom alloy catalysts toward chemoselective hydrogenation of nitroarenes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Yong-Qing Yan & Ya Chen & Zhao Wang & Li-Hua Chen & Hao-Lin Tang & Bao-Lian Su, 2023. "Electrochemistry-assisted selective butadiene hydrogenation with water," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Zhidong An & Piaoping Yang & Delong Duan & Jiang Li & Tong Wan & Yue Kong & Stavros Caratzoulas & Shuting Xiang & Jiaxing Liu & Lei Huang & Anatoly I. Frenkel & Yuan-Ye Jiang & Ran Long & Zhenxing Li , 2023. "Highly active, ultra-low loading single-atom iron catalysts for catalytic transfer hydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Zhe An & Zilong Zhang & Zeyu Huang & Hongbo Han & Binbin Song & Jian Zhang & Qi Ping & Yanru Zhu & Hongyan Song & Bin Wang & Lirong Zheng & Jing He, 2022. "Pt1 enhanced C-H activation synergistic with Ptn catalysis for glycerol cascade oxidation to glyceric acid," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Jiaqi Zhao & Jinjia Liu & Zhenhua Li & Kaiwen Wang & Run Shi & Pu Wang & Qing Wang & Geoffrey I. N. Waterhouse & Xiaodong Wen & Tierui Zhang, 2023. "Ruthenium-cobalt single atom alloy for CO photo-hydrogenation to liquid fuels at ambient pressures," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Jun Qi & Yadong Du & Qi Yang & Na Jiang & Jiachun Li & Yi Ma & Yangjun Ma & Xin Zhao & Jieshan Qiu, 2023. "Energy-saving and product-oriented hydrogen peroxide electrosynthesis enabled by electrochemistry pairing and product engineering," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Feilong Xing & Jiamin Ma & Ken-ichi Shimizu & Shinya Furukawa, 2022. "High-entropy intermetallics on ceria as efficient catalysts for the oxidative dehydrogenation of propane using CO2," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Haifeng Qi & Yurou Li & Zhitong Zhou & Yueqiang Cao & Fei Liu & Weixiang Guan & Leilei Zhang & Xiaoyan Liu & Lin Li & Yang Su & Kathrin Junge & Xuezhi Duan & Matthias Beller & Aiqin Wang & Tao Zhang, 2023. "Synthesis of piperidines and pyridine from furfural over a surface single-atom alloy Ru1CoNP catalyst," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Jing Xue & Xue Dong & Chunxiao Liu & Jiawei Li & Yizhou Dai & Weiqing Xue & Laihao Luo & Yuan Ji & Xiao Zhang & Xu Li & Qiu Jiang & Tingting Zheng & Jianping Xiao & Chuan Xia, 2024. "Turning copper into an efficient and stable CO evolution catalyst beyond noble metals," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Jiao Lan & Zengxi Wei & Ying-Rui Lu & DeChao Chen & Shuangliang Zhao & Ting-Shan Chan & Yongwen Tan, 2023. "Efficient electrosynthesis of formamide from carbon monoxide and nitrite on a Ru-dispersed Cu nanocluster catalyst," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Zhongkai Xie & Shengjie Xu & Longhua Li & Shanhe Gong & Xiaojie Wu & Dongbo Xu & Baodong Mao & Ting Zhou & Min Chen & Xiao Wang & Weidong Shi & Shuyan Song, 2024. "Well-defined diatomic catalysis for photosynthesis of C2H4 from CO2," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Zhi Wen Chen & Jian Li & Pengfei Ou & Jianan Erick Huang & Zi Wen & LiXin Chen & Xue Yao & GuangMing Cai & Chun Cheng Yang & Chandra Veer Singh & Qing Jiang, 2024. "Unusual Sabatier principle on high entropy alloy catalysts for hydrogen evolution reactions," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Manjeet Chhetri & Mingyu Wan & Zehua Jin & John Yeager & Case Sandor & Conner Rapp & Hui Wang & Sungsik Lee & Cameron J. Bodenschatz & Michael J. Zachman & Fanglin Che & Ming Yang, 2023. "Dual-site catalysts featuring platinum-group-metal atoms on copper shapes boost hydrocarbon formations in electrocatalytic CO2 reduction," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Imtisal Zahid & Muhammad Ayoub & Bawadi Bin Abdullah & Muhammad Hamza Nazir & Zulqarnain & Mariam Ameen Kaimkhani & Farooq Sher, 2021. "Activation of Nano Kaolin Clay for Bio-Glycerol Conversion to a Valuable Fuel Additive," Sustainability, MDPI, vol. 13(5), pages 1-17, March.
    16. Xiaowen Chen & Xuetao Qin & Yueyue Jiao & Mi Peng & Jiangyong Diao & Pengju Ren & Chengyu Li & Dequan Xiao & Xiaodong Wen & Zheng Jiang & Ning Wang & Xiangbin Cai & Hongyang Liu & Ding Ma, 2023. "Structure-dependence and metal-dependence on atomically dispersed Ir catalysts for efficient n-butane dehydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Yong Yuan & Erwei Huang & Sooyeon Hwang & Ping Liu & Jingguang G. Chen, 2024. "Confining platinum clusters in indium-modified ZSM-5 zeolite to promote propane dehydrogenation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    18. Zhongliang Huang & Shengnan Hu & Mingzi Sun & Yong Xu & Shangheng Liu & Renjie Ren & Lin Zhuang & Ting-Shan Chan & Zhiwei Hu & Tianyi Ding & Jing Zhou & Liangbin Liu & Mingmin Wang & Yu-Cheng Huang & , 2024. "Implanting oxophilic metal in PtRu nanowires for hydrogen oxidation catalysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Zhimin Jia & Xuetao Qin & Yunlei Chen & Xiangbin Cai & Zirui Gao & Mi Peng & Fei Huang & Dequan Xiao & Xiaodong Wen & Ning Wang & Zheng Jiang & Wu Zhou & Hongyang Liu & Ding Ma, 2022. "Fully-exposed Pt-Fe cluster for efficient preferential oxidation of CO towards hydrogen purification," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. Xie, Xuanlan & Li, Chang & Lu, Zhiheng & Wang, Yishuang & Yang, Wenqiang & Chen, Mingqiang & Li, Wenzhi, 2024. "Noble metal modified copper-exchanged mordenite zeolite (Cu-ex-MOR) catalysts for catalyzing the methane efficient gas-phase synthesis methanol," Energy, Elsevier, vol. 300(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35515-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.