IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37412-0.html
   My bibliography  Save this article

Four distinct network patterns of supramolecular/polymer composite hydrogels controlled by formation kinetics and interfiber interactions

Author

Listed:
  • Keisuke Nakamura

    (Kyoto University)

  • Ryou Kubota

    (Kyoto University)

  • Takuma Aoyama

    (Kyoto Institute of Technology
    Kyoto University)

  • Kenji Urayama

    (Kyoto University)

  • Itaru Hamachi

    (Kyoto University
    JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience)

Abstract

Synthetic composite hydrogels comprising supramolecular fibers and covalent polymers have attracted considerable attention because their properties are similar to biological connective tissues. However, an in-depth analysis of the network structures has not been performed. In this study, we discovered the composite network can be categorized into four distinct patterns regarding morphology and colocalization of the components using in situ, real-time confocal imaging. Time-lapse imaging of the network formation process reveals that the patterns are governed by two factors, the order of the network formation and the interactions between the two different fibers. Additionally, the imaging studies revealed a unique composite hydrogel undergoing dynamic network remodeling on the scale of a hundred micrometers to more than one millimeter. Such dynamic properties allow for fracture-induced artificial patterning of a network three dimensionally. This study introduces a valuable guideline to the design of hierarchical composite soft materials.

Suggested Citation

  • Keisuke Nakamura & Ryou Kubota & Takuma Aoyama & Kenji Urayama & Itaru Hamachi, 2023. "Four distinct network patterns of supramolecular/polymer composite hydrogels controlled by formation kinetics and interfiber interactions," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37412-0
    DOI: 10.1038/s41467-023-37412-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37412-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37412-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jeong-Yun Sun & Xuanhe Zhao & Widusha R. K. Illeperuma & Ovijit Chaudhuri & Kyu Hwan Oh & David J. Mooney & Joost J. Vlassak & Zhigang Suo, 2012. "Highly stretchable and tough hydrogels," Nature, Nature, vol. 489(7414), pages 133-136, September.
    2. Marta Tena-Solsona & Benedikt Rieß & Raphael K. Grötsch & Franziska C. Löhrer & Caren Wanzke & Benjamin Käsdorf & Andreas R. Bausch & Peter Müller-Buschbaum & Oliver Lieleg & Job Boekhoven, 2017. "Non-equilibrium dissipative supramolecular materials with a tunable lifetime," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
    3. Yuan Gao & Junfeng Shi & Dan Yuan & Bing Xu, 2012. "Imaging enzyme-triggered self-assembly of small molecules inside live cells," Nature Communications, Nature, vol. 3(1), pages 1-8, January.
    4. Hajime Shigemitsu & Ryou Kubota & Keisuke Nakamura & Tomonobu Matsuzaki & Saori Minami & Takuma Aoyama & Kenji Urayama & Itaru Hamachi, 2020. "Protein-responsive protein release of supramolecular/polymer hydrogel composite integrating enzyme activation systems," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    5. Matija Lovrak & Wouter E. J. Hendriksen & Chandan Maity & Serhii Mytnyk & Volkert van Steijn & Rienk Eelkema & Jan H. van Esch, 2017. "Free-standing supramolecular hydrogel objects by reaction-diffusion," Nature Communications, Nature, vol. 8(1), pages 1-10, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simone M. Poprawa & Michele Stasi & Brigitte A. K. Kriebisch & Monika Wenisch & Judit Sastre & Job Boekhoven, 2024. "Active droplets through enzyme-free, dynamic phosphorylation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Guangyu Bao & Qiman Gao & Massimo Cau & Nabil Ali-Mohamad & Mitchell Strong & Shuaibing Jiang & Zhen Yang & Amin Valiei & Zhenwei Ma & Marco Amabili & Zu-Hua Gao & Luc Mongeau & Christian Kastrup & Ji, 2022. "Liquid-infused microstructured bioadhesives halt non-compressible hemorrhage," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Dongliang Fan & Xi Yuan & Wenyu Wu & Renjie Zhu & Xin Yang & Yuxuan Liao & Yunteng Ma & Chufan Xiao & Cheng Chen & Changyue Liu & Hongqiang Wang & Peiwu Qin, 2022. "Self-shrinking soft demoulding for complex high-aspect-ratio microchannels," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Huimin He & Xi Wei & Bin Yang & Hongzhen Liu & Mingze Sun & Yanran Li & Aixin Yan & Chuyang Y. Tang & Yuan Lin & Lizhi Xu, 2022. "Ultrastrong and multifunctional aerogels with hyperconnective network of composite polymeric nanofibers," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Fabian Schnitter & Benedikt Rieß & Christian Jandl & Job Boekhoven, 2022. "Memory, switches, and an OR-port through bistability in chemically fueled crystals," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Aruã Clayton Da Silva & Junzhi Wang & Ivan Rusev Minev, 2022. "Electro-assisted printing of soft hydrogels via controlled electrochemical reactions," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Feipeng Chen & Xiufeng Li & Yafeng Yu & Qingchuan Li & Haisong Lin & Lizhi Xu & Ho Cheung Shum, 2023. "Phase-separation facilitated one-step fabrication of multiscale heterogeneous two-aqueous-phase gel," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Ruixin Zhu & Dandan Zhu & Zhen Zheng & Xinling Wang, 2024. "Tough double network hydrogels with rapid self-reinforcement and low hysteresis based on highly entangled networks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Benjamin Klemm & Reece W. Lewis & Irene Piergentili & Rienk Eelkema, 2022. "Temporally programmed polymer – solvent interactions using a chemical reaction network," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Haoqing Yang & Tengxiao Liu & Lihua Jin & Yu Huang & Xiangfeng Duan & Hongtao Sun, 2024. "Tailoring smart hydrogels through manipulation of heterogeneous subdomains," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Zhengyu Xu & Jiajun Lu & Di Lu & Yiran Li & Hai Lei & Bin Chen & Wenfei Li & Bin Xue & Yi Cao & Wei Wang, 2024. "Rapidly damping hydrogels engineered through molecular friction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Cui, Shuang & Ahn, Chihyung & Wingert, Matthew C. & Leung, David & Cai, Shengqiang & Chen, Renkun, 2016. "Bio-inspired effective and regenerable building cooling using tough hydrogels," Applied Energy, Elsevier, vol. 168(C), pages 332-339.
    13. Yan Zhang & Yafei Wang & Ying Guan & Yongjun Zhang, 2022. "Peptide-enhanced tough, resilient and adhesive eutectogels for highly reliable strain/pressure sensing under extreme conditions," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Da-Yong Hou & Dong-Bing Cheng & Ni-Yuan Zhang & Zhi-Jia Wang & Xing-Jie Hu & Xin Li & Mei-Yu Lv & Xiang-Peng Li & Ling-Rui Jian & Jin-Peng Ma & Taolei Sun & Zeng-Ying Qiao & Wanhai Xu & Hao Wang, 2024. "In vivo assembly enhanced binding effect augments tumor specific ferroptosis therapy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    15. Jingjing Li & Yihan Cui & Yi-Lin Lu & Yunfei Zhang & Kaihuang Zhang & Chaonan Gu & Kaifang Wang & Yujia Liang & Chun-Sen Liu, 2023. "Programmable supramolecular chirality in non-equilibrium systems affording a multistate chiroptical switch," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Yuan Tian & Zhihao Wang & Shuiyan Cao & Dong Liu & Yukun Zhang & Chong Chen & Zhiwen Jiang & Jun Ma & Yunlong Wang, 2024. "Connective tissue inspired elastomer-based hydrogel for artificial skin via radiation-indued penetrating polymerization," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Jing Chen & Yiyang Gao & Lei Shi & Wei Yu & Zongjie Sun & Yifan Zhou & Shuang Liu & Heng Mao & Dongyang Zhang & Tongqing Lu & Quan Chen & Demei Yu & Shujiang Ding, 2022. "Phase-locked constructing dynamic supramolecular ionic conductive elastomers with superior toughness, autonomous self-healing and recyclability," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Bo Yi & Tianjie Li & Boguang Yang & Sirong Chen & Jianyang Zhao & Pengchao Zhao & Kunyu Zhang & Yi Wang & Zuankai Wang & Liming Bian, 2024. "Surface hydrophobization of hydrogels via interface dynamics-induced network reconfiguration," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Seola Lee & Pierre J. Walker & Seneca J. Velling & Amylynn Chen & Zane W. Taylor & Cyrus J.B.M Fiori & Vatsa Gandhi & Zhen-Gang Wang & Julia R. Greer, 2024. "Molecular control via dynamic bonding enables material responsiveness in additively manufactured metallo-polyelectrolytes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Xiao Liu & Jingping Wu & Keke Qiao & Guohan Liu & Zhengjin Wang & Tongqing Lu & Zhigang Suo & Jian Hu, 2022. "Topoarchitected polymer networks expand the space of material properties," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37412-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.