Author
Listed:
- Zhao Xu
(Hefei University of Technology)
- Hong Chen
(Hefei University of Technology)
- Huai-Bin Yang
(Southern University of Science and Technology
University of Science and Technology of China)
- Xin Yao
(Hefei University of Technology)
- Haili Qin
(Hefei University of Technology)
- Huai-Ping Cong
(Hefei University of Technology)
- Shu-Hong Yu
(Southern University of Science and Technology
University of Science and Technology of China)
Abstract
Natural materials with highly oriented heterogeneous structures are often lightweight but strong, stiff but tough and durable. Such an integration of diverse incompatible mechanical properties is highly desired for man-made materials, especially weak hydrogels which are lack of high-precision structural design. Herein, we demonstrate the fabrication of hierarchically aligned heterogeneous hydrogels consisting of a compactly crosslinked sheath and an aligned porous core with alignments of nanofibrils at multi-scales by a sequential self-assembly assisted salting out method. The produced hydrogel offers ultrahigh mechanical properties among the reported hydrogels, elastomers and natural materials, including a toughness of 1031 MJ · m-3, strength of 55.3 MPa, strain of 3300%, stiffness of 6.8 MPa, fracture energy of 552.7 kJ · m-2 and fatigue threshold of 40.9 kJ · m-2. Furthermore, such a tough and strong hydrogel facilely achieves stable regeneration and rapid adhesion owing to the highly crystallized and aligned network structure. The regenerated specimen presents the reinforced strength, toughness and fatigue resistance over 10 regeneration cycles. This work provides a simple method to produce hydrogels with bioinspired heterostructures and combinational properties for real applications.
Suggested Citation
Zhao Xu & Hong Chen & Huai-Bin Yang & Xin Yao & Haili Qin & Huai-Ping Cong & Shu-Hong Yu, 2025.
"Hierarchically aligned heterogeneous core-sheath hydrogels,"
Nature Communications, Nature, vol. 16(1), pages 1-14, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55677-x
DOI: 10.1038/s41467-024-55677-x
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55677-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.