IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37048-0.html
   My bibliography  Save this article

Polarization-directed growth of spiral nanostructures by laser direct writing with vector beams

Author

Listed:
  • Xiaolin Lu

    (Wuhan University)

  • Xujie Wang

    (Wuhan University)

  • Shuangshuang Wang

    (Wuhan University)

  • Tao Ding

    (Wuhan University)

Abstract

Chirality is pivotal in nature which attracts wide research interests from all disciplines and creating chiral matter is one of the central themes for chemists and material scientists. Despite of significant efforts, a simple, cost-effective and general method that can produce different kinds of chiral metamaterials with high regularity and tailorability is still demanding but greatly missing. Here, we introduce polarization-directed growth of spiral nanostructures via vector beams, which is simple, tailorable and generally applicable to both plasmonic and dielectric materials. The self-aligned near field enhances the photochemical growth along the polarization, which is crucial for the oriented growth. The obtained plasmonic chiral nanostructures present prominent optical activity with a g-factor up to 0.4, which can be tuned by adjusting the spirality of the vector beams. These spiral plasmonic nanostructures can be used for the sensing of different chiral enantiomers. The dielectric chiral metasurfaces can also be formed in arrays of sub-mm scale, which exhibit a g-factor over 0.1. However, photoluminescence of chiral cadmium sulfide presents a very weak luminescence g-factor with the excitation of linearly polarized light. A number of applications can be envisioned with these chiral nanostructures such as chiral sensing, chiral separation and chiral information storage.

Suggested Citation

  • Xiaolin Lu & Xujie Wang & Shuangshuang Wang & Tao Ding, 2023. "Polarization-directed growth of spiral nanostructures by laser direct writing with vector beams," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37048-0
    DOI: 10.1038/s41467-023-37048-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37048-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37048-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Liguang Xu & Xiuxiu Wang & Weiwei Wang & Maozhong Sun & Won Jin Choi & Ji-Young Kim & Changlong Hao & Si Li & Aihua Qu & Meiru Lu & Xiaoling Wu & Felippe M. Colombari & Weverson R. Gomes & Asdrubal L., 2022. "Enantiomer-dependent immunological response to chiral nanoparticles," Nature, Nature, vol. 601(7893), pages 366-373, January.
    2. Peter Lodahl & Sahand Mahmoodian & Søren Stobbe & Arno Rauschenbeutel & Philipp Schneeweiss & Jürgen Volz & Hannes Pichler & Peter Zoller, 2017. "Chiral quantum optics," Nature, Nature, vol. 541(7638), pages 473-480, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xue-Guang Chen & Linhan Lin & Guan-Yao Huang & Xiao-Mei Chen & Xiao-Ze Li & Yun-Ke Zhou & Yixuan Zou & Tairan Fu & Peng Li & Zhengcao Li & Hong-Bo Sun, 2024. "Optofluidic crystallithography for directed growth of single-crystalline halide perovskites," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Yi-Heng Zhang & Si-Jia Liu & Peng Chen & Dong Zhu & Wen Chen & Shi-Jun Ge & Yu Wang & Zhi-Feng Zhang & Yan-Qing Lu, 2024. "Logical rotation of non-separable states via uniformly self-assembled chiral superstructures," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yifan Xie & Shuo Feng & Linxiao Deng & Aoran Cai & Liyu Gan & Zifan Jiang & Peng Yang & Guilin Ye & Zaiqing Liu & Li Wen & Qing Zhu & Wanjun Zhang & Zhanpeng Zhang & Jiahe Li & Zeyu Feng & Chutian Zha, 2023. "Inverse design of chiral functional films by a robotic AI-guided system," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Huacheng Li & Xin Xu & Rongcheng Guan & Artur Movsesyan & Zhenni Lu & Qiliang Xu & Ziyun Jiang & Yurong Yang & Majid Khan & Jin Wen & Hongwei Wu & Santiago Moya & Gil Markovich & Huatian Hu & Zhiming , 2024. "Collective chiroptical activity through the interplay of excitonic and charge-transfer effects in localized plasmonic fields," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Weitao Yuan & Chenwen Yang & Danmei Zhang & Yang Long & Yongdong Pan & Zheng Zhong & Hong Chen & Jinfeng Zhao & Jie Ren, 2021. "Observation of elastic spin with chiral meta-sources," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Jiawei Lv & Jeong Hyun Han & Geonho Han & Seongmin An & Seung Ju Kim & Ryeong Myeong Kim & Jung‐El Ryu & Rena Oh & Hyuckjin Choi & In Han Ha & Yoon Ho Lee & Minje Kim & Gyeong-Su Park & Ho Won Jang & , 2024. "Spatiotemporally modulated full-polarized light emission for multiplexed optical encryption," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Elena S. Redchenko & Alexander V. Poshakinskiy & Riya Sett & Martin Žemlička & Alexander N. Poddubny & Johannes M. Fink, 2023. "Tunable directional photon scattering from a pair of superconducting qubits," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Tianran Zhang & Dengping Lyu & Wei Xu & Xuan Feng & Ran Ni & Yufeng Wang, 2023. "Janus particles with tunable patch symmetry and their assembly into chiral colloidal clusters," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Mathias J. R. Staunstrup & Alexey Tiranov & Ying Wang & Sven Scholz & Andreas D. Wieck & Arne Ludwig & Leonardo Midolo & Nir Rotenberg & Peter Lodahl & Hanna Le Jeannic, 2024. "Direct observation of a few-photon phase shift induced by a single quantum emitter in a waveguide," Nature Communications, Nature, vol. 15(1), pages 1-5, December.
    8. Longlong Yang & Yu Yuan & Bowen Fu & Jingnan Yang & Danjie Dai & Shushu Shi & Sai Yan & Rui Zhu & Xu Han & Hancong Li & Zhanchun Zuo & Can Wang & Yuan Huang & Kuijuan Jin & Qihuang Gong & Xiulai Xu, 2023. "Revealing broken valley symmetry of quantum emitters in WSe2 with chiral nanocavities," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Chi Zhang & Huatian Hu & Chunmiao Ma & Yawen Li & Xujie Wang & Dongyao Li & Artur Movsesyan & Zhiming Wang & Alexander Govorov & Quan Gan & Tao Ding, 2024. "Quantum plasmonics pushes chiral sensing limit to single molecules: a paradigm for chiral biodetections," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Jing Ai & Xueliang Zhang & Te Bai & Qing Shen & Peter Oleynikov & Yingying Duan & Osamu Terasaki & Shunai Che & Lu Han, 2022. "Synchronous quantitative analysis of chiral mesostructured inorganic crystals by 3D electron diffraction tomography," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Zhiwei Yang & Yanze Wei & Jingjing Wei & Zhijie Yang, 2022. "Chiral superstructures of inorganic nanorods by macroscopic mechanical grinding," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Andrew H. Salij & Randall H. Goldsmith & Roel Tempelaar, 2024. "Theory predicts 2D chiral polaritons based on achiral Fabry–Pérot cavities using apparent circular dichroism," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Hongwei Wang & Anshuman Kumar & Siyuan Dai & Xiao Lin & Zubin Jacob & Sang-Hyun Oh & Vinod Menon & Evgenii Narimanov & Young Duck Kim & Jian-Ping Wang & Phaedon Avouris & Luis Martin Moreno & Joshua C, 2024. "Planar hyperbolic polaritons in 2D van der Waals materials," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Yoon Ho Lee & Yousang Won & Jungho Mun & Sanghyuk Lee & Yeseul Kim & Bongjun Yeom & Letian Dou & Junsuk Rho & Joon Hak Oh, 2023. "Hierarchically manufactured chiral plasmonic nanostructures with gigantic chirality for polarized emission and information encryption," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Wang, Xin & Huang, Kai-Wei & Qiu, Qing-Yang & Xiong, Hao, 2023. "Nonreciprocal double-carrier frequency combs in cavity magnonics," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    16. Si Li & Xinxin Xu & Liguang Xu & Hengwei Lin & Hua Kuang & Chuanlai Xu, 2024. "Emerging trends in chiral inorganic nanomaterials for enantioselective catalysis," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    17. Jiapeng Zheng & Christina Boukouvala & George R. Lewis & Yicong Ma & Yang Chen & Emilie Ringe & Lei Shao & Zhifeng Huang & Jianfang Wang, 2023. "Halide-assisted differential growth of chiral nanoparticles with threefold rotational symmetry," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Jacques Doumani & Minhan Lou & Oliver Dewey & Nina Hong & Jichao Fan & Andrey Baydin & Keshav Zahn & Yohei Yomogida & Kazuhiro Yanagi & Matteo Pasquali & Riichiro Saito & Junichiro Kono & Weilu Gao, 2023. "Engineering chirality at wafer scale with ordered carbon nanotube architectures," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Yajie Zhou & Yaxin Wang & Yonghui Song & Shanshan Zhao & Mingjiang Zhang & Guangen Li & Qi Guo & Zhi Tong & Zeyi Li & Shan Jin & Hong-Bin Yao & Manzhou Zhu & Taotao Zhuang, 2024. "Helical-caging enables single-emitted large asymmetric full-color circularly polarized luminescence," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    20. Liao, Qinghong & Song, Menglin & Bao, Weida, 2023. "Generation of second-order sideband and slow-fast light effects in a PT-symmetric optomechanical system," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37048-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.