IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45299-8.html
   My bibliography  Save this article

Logical rotation of non-separable states via uniformly self-assembled chiral superstructures

Author

Listed:
  • Yi-Heng Zhang

    (Nanjing University)

  • Si-Jia Liu

    (Nanjing University)

  • Peng Chen

    (Nanjing University)

  • Dong Zhu

    (Nanjing University)

  • Wen Chen

    (Nanjing University)

  • Shi-Jun Ge

    (Nanjing University)

  • Yu Wang

    (Nanjing University)

  • Zhi-Feng Zhang

    (Nanjing University)

  • Yan-Qing Lu

    (Nanjing University)

Abstract

The next generation of high-capacity, multi-task optical informatics requires sophisticated manipulation of multiple degrees of freedom (DoFs) of light, especially when they are coupled in a non-separable way. Vector beam, as a typical non-separable state between the spin and orbital angular momentum DoFs, mathematically akin to entangled qubits, has inspired multifarious theories and applications in both quantum and classical regimes. Although qubit rotation is a vital and ubiquitous operation in quantum informatics, its classical analogue is rarely studied. Here, we demonstrate the logical rotation of vectorial non-separable states via the uniform self-assembled chiral superstructures, with favorable controllability, high compactness and exemption from formidable alignment. Photonic band engineering of such 1D chiral photonic crystal renders the incident-angle-dependent evolution of the spatially-variant polarizations. The logical rotation angle of a non-separable state can be tuned in a wide range over 4π by this single homogeneous device, flexibly providing a set of distinguished logic gates. Potential applications, including angular motion tracking and proof-of-principle logic network, are demonstrated by specific configuration. This work brings important insight into soft matter photonics and present an elegant strategy to harness high-dimensional photonic states.

Suggested Citation

  • Yi-Heng Zhang & Si-Jia Liu & Peng Chen & Dong Zhu & Wen Chen & Shi-Jun Ge & Yu Wang & Zhi-Feng Zhang & Yan-Qing Lu, 2024. "Logical rotation of non-separable states via uniformly self-assembled chiral superstructures," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45299-8
    DOI: 10.1038/s41467-024-45299-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45299-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45299-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ziyi Zhu & Molly Janasik & Alexander Fyffe & Darrick Hay & Yiyu Zhou & Brian Kantor & Taylor Winder & Robert W. Boyd & Gerd Leuchs & Zhimin Shi, 2021. "Compensation-free high-dimensional free-space optical communication using turbulence-resilient vector beams," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Zhifeng Zhang & Haoqi Zhao & Shuang Wu & Tianwei Wu & Xingdu Qiao & Zihe Gao & Ritesh Agarwal & Stefano Longhi & Natalia M. Litchinitser & Li Ge & Liang Feng, 2022. "Spin–orbit microlaser emitting in a four-dimensional Hilbert space," Nature, Nature, vol. 612(7939), pages 246-251, December.
    3. Peng Chen & Ling-Ling Ma & Wei Hu & Zhi-Xiong Shen & Hari Krishna Bisoyi & Sai-Bo Wu & Shi-Jun Ge & Quan Li & Yan-Qing Lu, 2019. "Chirality invertible superstructure mediated active planar optics," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    4. Xiaolin Lu & Xujie Wang & Shuangshuang Wang & Tao Ding, 2023. "Polarization-directed growth of spiral nanostructures by laser direct writing with vector beams," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiali Lv & Yu Tian & Fengxia Wu & Xiaoxi Luan & Fenghua Li & Zhili Shen & Guobao Xu & Kun Liu & Wenxin Niu, 2024. "Chiral plasmonic-dielectric coupling enables strong near-infrared chiroptical responses from helicoidal core-shell nanoparticles," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Xue-Guang Chen & Linhan Lin & Guan-Yao Huang & Xiao-Mei Chen & Xiao-Ze Li & Yun-Ke Zhou & Yixuan Zou & Tairan Fu & Peng Li & Zhengcao Li & Hong-Bo Sun, 2024. "Optofluidic crystallithography for directed growth of single-crystalline halide perovskites," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Davide Pierangeli & Claudio Conti, 2023. "Single-shot polarimetry of vector beams by supervised learning," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Martin Plöschner & Marcos Maestre Morote & Daniel Stephen Dahl & Mickael Mounaix & Greta Light & Aleksandar D. Rakić & Joel Carpenter, 2022. "Spatial tomography of light resolved in time, spectrum, and polarisation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Sihong Lei & Shiqi Xia & Daohong Song & Jingjun Xu & Hrvoje Buljan & Zhigang Chen, 2024. "Optical vortex ladder via Sisyphus pumping of Pseudospin," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Feng Mei & Geyang Qu & Xinbo Sha & Jing Han & Moxin Yu & Hao Li & Qinmiao Chen & Ziheng Ji & Jincheng Ni & Cheng-Wei Qiu & Qinghai Song & Yuri Kivshar & Shumin Xiao, 2023. "Cascaded metasurfaces for high-purity vortex generation," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    7. Xiaodong Qiu & Haoxu Guo & Lixiang Chen, 2023. "Remote transport of high-dimensional orbital angular momentum states and ghost images via spatial-mode-engineered frequency conversion," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45299-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.