IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37031-9.html
   My bibliography  Save this article

PeakDecoder enables machine learning-based metabolite annotation and accurate profiling in multidimensional mass spectrometry measurements

Author

Listed:
  • Aivett Bilbao

    (Pacific Northwest National Laboratory
    US Department of Energy, Agile BioFoundry)

  • Nathalie Munoz

    (Pacific Northwest National Laboratory
    US Department of Energy, Agile BioFoundry)

  • Joonhoon Kim

    (Pacific Northwest National Laboratory
    US Department of Energy, Agile BioFoundry)

  • Daniel J. Orton

    (Pacific Northwest National Laboratory)

  • Yuqian Gao

    (Pacific Northwest National Laboratory
    US Department of Energy, Agile BioFoundry)

  • Kunal Poorey

    (Sandia National Laboratory)

  • Kyle R. Pomraning

    (Pacific Northwest National Laboratory
    US Department of Energy, Agile BioFoundry)

  • Karl Weitz

    (Pacific Northwest National Laboratory)

  • Meagan Burnet

    (Pacific Northwest National Laboratory)

  • Carrie D. Nicora

    (Pacific Northwest National Laboratory)

  • Rosemarie Wilton

    (US Department of Energy, Agile BioFoundry
    Argonne National Laboratory)

  • Shuang Deng

    (Pacific Northwest National Laboratory
    US Department of Energy, Agile BioFoundry)

  • Ziyu Dai

    (Pacific Northwest National Laboratory
    US Department of Energy, Agile BioFoundry)

  • Ethan Oksen

    (Lawrence Berkeley National Laboratory)

  • Aaron Gee

    (Agilent Research Laboratories, Agilent Technologies)

  • Rick A. Fasani

    (Agilent Research Laboratories, Agilent Technologies)

  • Anya Tsalenko

    (Agilent Research Laboratories, Agilent Technologies)

  • Deepti Tanjore

    (US Department of Energy, Agile BioFoundry
    Lawrence Berkeley National Laboratory)

  • James Gardner

    (US Department of Energy, Agile BioFoundry
    Lawrence Berkeley National Laboratory)

  • Richard D. Smith

    (Pacific Northwest National Laboratory)

  • Joshua K. Michener

    (US Department of Energy, Agile BioFoundry
    Oak Ridge National Laboratory)

  • John M. Gladden

    (US Department of Energy, Agile BioFoundry
    Sandia National Laboratory)

  • Erin S. Baker

    (University of North Carolina)

  • Christopher J. Petzold

    (US Department of Energy, Agile BioFoundry
    Lawrence Berkeley National Laboratory)

  • Young-Mo Kim

    (Pacific Northwest National Laboratory
    US Department of Energy, Agile BioFoundry)

  • Alex Apffel

    (Agilent Research Laboratories, Agilent Technologies)

  • Jon K. Magnuson

    (Pacific Northwest National Laboratory
    US Department of Energy, Agile BioFoundry)

  • Kristin E. Burnum-Johnson

    (Pacific Northwest National Laboratory
    US Department of Energy, Agile BioFoundry)

Abstract

Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying biological and environmental bio-chemical processes. However, the lack of rapid analytical methods and robust algorithms for these heterogeneous data has limited its application. Here, we develop and evaluate a sensitive and high-throughput analytical and computational workflow to enable accurate metabolite profiling. Our workflow combines liquid chromatography, ion mobility spectrometry and data-independent acquisition mass spectrometry with PeakDecoder, a machine learning-based algorithm that learns to distinguish true co-elution and co-mobility from raw data and calculates metabolite identification error rates. We apply PeakDecoder for metabolite profiling of various engineered strains of Aspergillus pseudoterreus, Aspergillus niger, Pseudomonas putida and Rhodosporidium toruloides. Results, validated manually and against selected reaction monitoring and gas-chromatography platforms, show that 2683 features could be confidently annotated and quantified across 116 microbial sample runs using a library built from 64 standards.

Suggested Citation

  • Aivett Bilbao & Nathalie Munoz & Joonhoon Kim & Daniel J. Orton & Yuqian Gao & Kunal Poorey & Kyle R. Pomraning & Karl Weitz & Meagan Burnet & Carrie D. Nicora & Rosemarie Wilton & Shuang Deng & Ziyu , 2023. "PeakDecoder enables machine learning-based metabolite annotation and accurate profiling in multidimensional mass spectrometry measurements," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37031-9
    DOI: 10.1038/s41467-023-37031-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37031-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37031-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kursa, Miron B. & Rudnicki, Witold R., 2010. "Feature Selection with the Boruta Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i11).
    2. Pamela P. Peralta-Yahya & Mario Ouellet & Rossana Chan & Aindrila Mukhopadhyay & Jay D. Keasling & Taek Soon Lee, 2011. "Identification and microbial production of a terpene-based advanced biofuel," Nature Communications, Nature, vol. 2(1), pages 1-8, September.
    3. Oliver Alka & Premy Shanthamoorthy & Michael Witting & Karin Kleigrewe & Oliver Kohlbacher & Hannes L. Röst, 2022. "DIAMetAlyzer allows automated false-discovery rate-controlled analysis for data-independent acquisition in metabolomics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tong, Jianfeng & Liu, Zhenxing & Zhang, Yong & Zheng, Xiujuan & Jin, Junyang, 2023. "Improved multi-gate mixture-of-experts framework for multi-step prediction of gas load," Energy, Elsevier, vol. 282(C).
    2. Asma Shaheen & Javed Iqbal, 2018. "Spatial Distribution and Mobility Assessment of Carcinogenic Heavy Metals in Soil Profiles Using Geostatistics and Random Forest, Boruta Algorithm," Sustainability, MDPI, vol. 10(3), pages 1-20, March.
    3. Ramón Ferri-García & María del Mar Rueda, 2022. "Variable selection in Propensity Score Adjustment to mitigate selection bias in online surveys," Statistical Papers, Springer, vol. 63(6), pages 1829-1881, December.
    4. Manuel J. García Rodríguez & Vicente Rodríguez Montequín & Francisco Ortega Fernández & Joaquín M. Villanueva Balsera, 2019. "Public Procurement Announcements in Spain: Regulations, Data Analysis, and Award Price Estimator Using Machine Learning," Complexity, Hindawi, vol. 2019, pages 1-20, November.
    5. Sangjin Kim & Jong-Min Kim, 2019. "Two-Stage Classification with SIS Using a New Filter Ranking Method in High Throughput Data," Mathematics, MDPI, vol. 7(6), pages 1-16, May.
    6. Zhao-Yue Chen & Hervé Petetin & Raúl Fernando Méndez Turrubiates & Hicham Achebak & Carlos Pérez García-Pando & Joan Ballester, 2024. "Population exposure to multiple air pollutants and its compound episodes in Europe," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Schrader, Silja & Graham, Sonia & Campbell, Rebecca & Height, Kaitlyn & Hawkes, Gina, 2024. "Grower attitudes and practices toward area-wide management of cropping weeds in Australia," Land Use Policy, Elsevier, vol. 137(C).
    8. Piotr Pomorski & Denise Gorse, 2023. "Improving Portfolio Performance Using a Novel Method for Predicting Financial Regimes," Papers 2310.04536, arXiv.org.
    9. Caperna, Giulio & Colagrossi, Marco & Geraci, Andrea & Mazzarella, Gianluca, 2022. "A babel of web-searches: Googling unemployment during the pandemic," Labour Economics, Elsevier, vol. 74(C).
    10. Hakan Pabuccu & Adrian Barbu, 2023. "Feature Selection with Annealing for Forecasting Financial Time Series," Papers 2303.02223, arXiv.org, revised Feb 2024.
    11. Abolfazl Mollalo & Kiara M. Rivera & Behzad Vahedi, 2020. "Artificial Neural Network Modeling of Novel Coronavirus (COVID-19) Incidence Rates across the Continental United States," IJERPH, MDPI, vol. 17(12), pages 1-13, June.
    12. Faisal Alsayegh & Moh A Alkhamis & Fatima Ali & Sreeja Attur & Nicholas M Fountain-Jones & Mohammad Zubaid, 2022. "Anemia or other comorbidities? using machine learning to reveal deeper insights into the drivers of acute coronary syndromes in hospital admitted patients," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-15, January.
    13. Andrea Albergoni & Florentina J. Hettinga & Wim Stut & Francesco Sartor, 2020. "Factors Influencing Walking and Exercise Adherence in Healthy Older Adults Using Monitoring and Interfacing Technology: Preliminary Evidence," IJERPH, MDPI, vol. 17(17), pages 1-18, August.
    14. Franck Ramaharo & Fitiavana Randriamifidy, 2023. "Determinants of renewable energy consumption in Madagascar: Evidence from feature selection algorithms," Papers 2401.13671, arXiv.org.
    15. Yu, Yang & Yu, Qinghua & Luo, RunSen & Chen, Sheng & Yang, Jiebo & Yan, Fuwu, 2024. "Degradation and polarization curve prediction of proton exchange membrane fuel cells: An interpretable model perspective," Applied Energy, Elsevier, vol. 365(C).
    16. Weichun Zhang & Yunyi Zhang & Xin Zhang & Wei Wu & Hongbin Liu, 2024. "The Spatiotemporal Variability of Soil Available Phosphorus and Potassium in Karst Region: The Crucial Role of Socio-Geographical Factors," Land, MDPI, vol. 13(6), pages 1-21, June.
    17. Jamei, Mehdi & Ali, Mumtaz & Karbasi, Masoud & Xiang, Yong & Ahmadianfar, Iman & Yaseen, Zaher Mundher, 2022. "Designing a Multi-Stage Expert System for daily ocean wave energy forecasting: A multivariate data decomposition-based approach," Applied Energy, Elsevier, vol. 326(C).
    18. Gang Chen & Xianju Li & Weitao Chen & Xinwen Cheng & Yujin Zhang & Shengwei Liu, 2014. "Extraction and application analysis of landslide influential factors based on LiDAR DEM: a case study in the Three Gorges area, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 509-526, November.
    19. Guo, Peiyang & Lam, Jacqueline C.K. & Li, Victor O.K., 2019. "Drivers of domestic electricity users’ price responsiveness: A novel machine learning approach," Applied Energy, Elsevier, vol. 235(C), pages 900-913.
    20. Hamed Ahmadpour & Ommolbanin Bazrafshan & Elham Rafiei-Sardooi & Hossein Zamani & Thomas Panagopoulos, 2021. "Gully Erosion Susceptibility Assessment in the Kondoran Watershed Using Machine Learning Algorithms and the Boruta Feature Selection," Sustainability, MDPI, vol. 13(18), pages 1-24, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37031-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.