IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0262997.html
   My bibliography  Save this article

Anemia or other comorbidities? using machine learning to reveal deeper insights into the drivers of acute coronary syndromes in hospital admitted patients

Author

Listed:
  • Faisal Alsayegh
  • Moh A Alkhamis
  • Fatima Ali
  • Sreeja Attur
  • Nicholas M Fountain-Jones
  • Mohammad Zubaid

Abstract

Acute coronary syndromes (ACS) are a leading cause of deaths worldwide, yet the diagnosis and treatment of this group of diseases represent a significant challenge for clinicians. The epidemiology of ACS is extremely complex and the relationship between ACS and patient risk factors is typically non-linear and highly variable across patient lifespan. Here, we aim to uncover deeper insights into the factors that shape ACS outcomes in hospitals across four Arabian Gulf countries. Further, because anemia is one of the most observed comorbidities, we explored its role in the prognosis of most prevalent ACS in-hospital outcomes (mortality, heart failure, and bleeding) in the region. We used a robust multi-algorithm interpretable machine learning (ML) pipeline, and 20 relevant risk factors to fit predictive models to 4,044 patients presenting with ACS between 2012 and 2013. We found that in-hospital heart failure followed by anemia was the most important predictor of mortality. However, anemia was the first most important predictor for both in-hospital heart failure, and bleeding. For all in-hospital outcome, anemia had remarkably non-linear relationships with both ACS outcomes and patients’ baseline characteristics. With minimal statistical assumptions, our ML models had reasonable predictive performance (AUCs > 0.75) and substantially outperformed commonly used statistical and risk stratification methods. Moreover, our pipeline was able to elucidate ACS risk of individual patients based on their unique risk factors. Fully interpretable ML approaches are rarely used in clinical settings, particularly in the Middle East, but have the potential to improve clinicians’ prognostic efforts and guide policymakers in reducing the health and economic burdens of ACS worldwide.

Suggested Citation

  • Faisal Alsayegh & Moh A Alkhamis & Fatima Ali & Sreeja Attur & Nicholas M Fountain-Jones & Mohammad Zubaid, 2022. "Anemia or other comorbidities? using machine learning to reveal deeper insights into the drivers of acute coronary syndromes in hospital admitted patients," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-15, January.
  • Handle: RePEc:plo:pone00:0262997
    DOI: 10.1371/journal.pone.0262997
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0262997
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0262997&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0262997?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kursa, Miron B. & Rudnicki, Witold R., 2010. "Feature Selection with the Boruta Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i11).
    2. Kuhn, Max, 2008. "Building Predictive Models in R Using the caret Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i05).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arjan S. Gosal & Janine A. McMahon & Katharine M. Bowgen & Catherine H. Hoppe & Guy Ziv, 2021. "Identifying and Mapping Groups of Protected Area Visitors by Environmental Awareness," Land, MDPI, vol. 10(6), pages 1-14, May.
    2. Francesco Sartor & Jonathan P. Moore & Hans-Peter Kubis, 2021. "Plasma Interleukin-10 and Cholesterol Levels May Inform about Interdependences between Fitness and Fatness in Healthy Individuals," IJERPH, MDPI, vol. 18(4), pages 1-19, February.
    3. Franck M. Ramaharo & Michael Fitiavana Randriamifidy, 2023. "Determinants of renewable energy consumption in Madagascar: Evidence from feature selection algorithms," Working Papers hal-04262240, HAL.
    4. Sara Saadatmand & Khodakaram Salimifard & Reza Mohammadi & Alex Kuiper & Maryam Marzban & Akram Farhadi, 2023. "Using machine learning in prediction of ICU admission, mortality, and length of stay in the early stage of admission of COVID-19 patients," Annals of Operations Research, Springer, vol. 328(1), pages 1043-1071, September.
    5. Svetlana Kresova & Sebastian Hess, 2022. "Identifying the Determinants of Regional Raw Milk Prices in Russia Using Machine Learning," Agriculture, MDPI, vol. 12(7), pages 1-18, July.
    6. Kresova, Svetlana & Hess, Sebastian, 2021. "Determinants of Regional Raw Milk Prices in Russia," 61st Annual Conference, Berlin, Germany, September 22-24, 2021 317051, German Association of Agricultural Economists (GEWISOLA).
    7. Nanna Munck & Patrick Murigu Kamau Njage & Pimlapas Leekitcharoenphon & Eva Litrup & Tine Hald, 2020. "Application of Whole‐Genome Sequences and Machine Learning in Source Attribution of Salmonella Typhimurium," Risk Analysis, John Wiley & Sons, vol. 40(9), pages 1693-1705, September.
    8. Tanzeela Khalid & Raphael Aggio & Paul White & Ben De Lacy Costello & Raj Persad & Huda Al-Kateb & Peter Jones & Chris S Probert & Norman Ratcliffe, 2015. "Urinary Volatile Organic Compounds for the Detection of Prostate Cancer," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-15, November.
    9. Gehan A. Mousa & Elsayed A. H. Elamir & Khaled Hussainey, 2022. "Using machine learning methods to predict financial performance: Does disclosure tone matter?," International Journal of Disclosure and Governance, Palgrave Macmillan, vol. 19(1), pages 93-112, March.
    10. Carlos Família & Sarah R Dennison & Alexandre Quintas & David A Phoenix, 2015. "Prediction of Peptide and Protein Propensity for Amyloid Formation," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-16, August.
    11. Prabal Das & D. A. Sachindra & Kironmala Chanda, 2022. "Machine Learning-Based Rainfall Forecasting with Multiple Non-Linear Feature Selection Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6043-6071, December.
    12. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Piaopiao Chen & Agnès H. Michel & Jianzhi Zhang, 2022. "Transposon insertional mutagenesis of diverse yeast strains suggests coordinated gene essentiality polymorphisms," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    14. Paulo Infante & Gonçalo Jacinto & Anabela Afonso & Leonor Rego & Pedro Nogueira & Marcelo Silva & Vitor Nogueira & José Saias & Paulo Quaresma & Daniel Santos & Patrícia Góis & Paulo Rebelo Manuel, 2023. "Factors That Influence the Type of Road Traffic Accidents: A Case Study in a District of Portugal," Sustainability, MDPI, vol. 15(3), pages 1-16, January.
    15. Ephrem Habyarimana & Faheem S Baloch, 2021. "Machine learning models based on remote and proximal sensing as potential methods for in-season biomass yields prediction in commercial sorghum fields," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-23, March.
    16. Tong, Jianfeng & Liu, Zhenxing & Zhang, Yong & Zheng, Xiujuan & Jin, Junyang, 2023. "Improved multi-gate mixture-of-experts framework for multi-step prediction of gas load," Energy, Elsevier, vol. 282(C).
    17. Banks, Jonathan & Rabbani, Arif & Nadkarni, Kabir & Renaud, Evan, 2020. "Estimating parasitic loads related to brine production from a hot sedimentary aquifer geothermal project: A case study from the Clarke Lake gas field, British Columbia," Renewable Energy, Elsevier, vol. 153(C), pages 539-552.
    18. Asma Shaheen & Javed Iqbal, 2018. "Spatial Distribution and Mobility Assessment of Carcinogenic Heavy Metals in Soil Profiles Using Geostatistics and Random Forest, Boruta Algorithm," Sustainability, MDPI, vol. 10(3), pages 1-20, March.
    19. Ramón Ferri-García & María del Mar Rueda, 2022. "Variable selection in Propensity Score Adjustment to mitigate selection bias in online surveys," Statistical Papers, Springer, vol. 63(6), pages 1829-1881, December.
    20. Yvan Devaux & Lu Zhang & Andrew I. Lumley & Kanita Karaduzovic-Hadziabdic & Vincent Mooser & Simon Rousseau & Muhammad Shoaib & Venkata Satagopam & Muhamed Adilovic & Prashant Kumar Srivastava & Costa, 2024. "Development of a long noncoding RNA-based machine learning model to predict COVID-19 in-hospital mortality," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0262997. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.