IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29006-z.html
   My bibliography  Save this article

DIAMetAlyzer allows automated false-discovery rate-controlled analysis for data-independent acquisition in metabolomics

Author

Listed:
  • Oliver Alka

    (University of Tübingen
    University of Tübingen)

  • Premy Shanthamoorthy

    (University of Toronto
    University of Toronto)

  • Michael Witting

    (Helmholtz Zentrum München
    Helmholtz Zentrum München
    Technical University of Munich)

  • Karin Kleigrewe

    (Technical University of Munich)

  • Oliver Kohlbacher

    (University of Tübingen
    University of Tübingen
    University Hospital Tübingen)

  • Hannes L. Röst

    (University of Toronto
    University of Toronto
    University of Toronto)

Abstract

The extraction of meaningful biological knowledge from high-throughput mass spectrometry data relies on limiting false discoveries to a manageable amount. For targeted approaches in metabolomics a main challenge is the detection of false positive metabolic features in the low signal-to-noise ranges of data-independent acquisition results and their filtering. Another factor is that the creation of assay libraries for data-independent acquisition analysis and the processing of extracted ion chromatograms have not been automated in metabolomics. Here we present a fully automated open-source workflow for high-throughput metabolomics that combines data-dependent and data-independent acquisition for library generation, analysis, and statistical validation, with rigorous control of the false-discovery rate while matching manual analysis regarding quantification accuracy. Using an experimentally specific data-dependent acquisition library based on reference substances allows for accurate identification of compounds and markers from data-independent acquisition data in low concentrations, facilitating biomarker quantification.

Suggested Citation

  • Oliver Alka & Premy Shanthamoorthy & Michael Witting & Karin Kleigrewe & Oliver Kohlbacher & Hannes L. Röst, 2022. "DIAMetAlyzer allows automated false-discovery rate-controlled analysis for data-independent acquisition in metabolomics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29006-z
    DOI: 10.1038/s41467-022-29006-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29006-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29006-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kerstin Scheubert & Franziska Hufsky & Daniel Petras & Mingxun Wang & Louis-Félix Nothias & Kai Dührkop & Nuno Bandeira & Pieter C. Dorrestein & Sebastian Böcker, 2017. "Significance estimation for large scale metabolomics annotations by spectral matching," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingdu Luo & Yandong Yin & Zhiwei Zhou & Haosong Zhang & Xi Chen & Hongmiao Wang & Zheng-Jiang Zhu, 2023. "A mass spectrum-oriented computational method for ion mobility-resolved untargeted metabolomics," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Aivett Bilbao & Nathalie Munoz & Joonhoon Kim & Daniel J. Orton & Yuqian Gao & Kunal Poorey & Kyle R. Pomraning & Karl Weitz & Meagan Burnet & Carrie D. Nicora & Rosemarie Wilton & Shuang Deng & Ziyu , 2023. "PeakDecoder enables machine learning-based metabolite annotation and accurate profiling in multidimensional mass spectrometry measurements," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Zhiqiang Pang & Lei Xu & Charles Viau & Yao Lu & Reza Salavati & Niladri Basu & Jianguo Xia, 2024. "MetaboAnalystR 4.0: a unified LC-MS workflow for global metabolomics," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel G. C. Treen & Mingxun Wang & Shipei Xing & Katherine B. Louie & Tao Huan & Pieter C. Dorrestein & Trent R. Northen & Benjamin P. Bowen, 2022. "SIMILE enables alignment of tandem mass spectra with statistical significance," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29006-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.