IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i12p4204-d370702.html
   My bibliography  Save this article

Artificial Neural Network Modeling of Novel Coronavirus (COVID-19) Incidence Rates across the Continental United States

Author

Listed:
  • Abolfazl Mollalo

    (Department of Public Health and Prevention Sciences, School of Health Sciences, Baldwin Wallace University, Berea, OH 44017, USA)

  • Kiara M. Rivera

    (Department of Public Health and Prevention Sciences, School of Health Sciences, Baldwin Wallace University, Berea, OH 44017, USA)

  • Behzad Vahedi

    (Department of Geography, University of California Santa Barbara (UCSB), Santa Barbara, CA 93106, USA)

Abstract

Prediction of the COVID-19 incidence rate is a matter of global importance, particularly in the United States. As of 4 June 2020, more than 1.8 million confirmed cases and over 108 thousand deaths have been reported in this country. Few studies have examined nationwide modeling of COVID-19 incidence in the United States particularly using machine-learning algorithms. Thus, we collected and prepared a database of 57 candidate explanatory variables to examine the performance of multilayer perceptron (MLP) neural network in predicting the cumulative COVID-19 incidence rates across the continental United States. Our results indicated that a single-hidden-layer MLP could explain almost 65% of the correlation with ground truth for the holdout samples. Sensitivity analysis conducted on this model showed that the age-adjusted mortality rates of ischemic heart disease, pancreatic cancer, and leukemia, together with two socioeconomic and environmental factors (median household income and total precipitation), are among the most substantial factors for predicting COVID-19 incidence rates. Moreover, results of the logistic regression model indicated that these variables could explain the presence/absence of the hotspots of disease incidence that were identified by Getis-Ord Gi* ( p < 0.05) in a geographic information system environment. The findings may provide useful insights for public health decision makers regarding the influence of potential risk factors associated with the COVID-19 incidence at the county level.

Suggested Citation

  • Abolfazl Mollalo & Kiara M. Rivera & Behzad Vahedi, 2020. "Artificial Neural Network Modeling of Novel Coronavirus (COVID-19) Incidence Rates across the Continental United States," IJERPH, MDPI, vol. 17(12), pages 1-13, June.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:12:p:4204-:d:370702
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/12/4204/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/12/4204/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kursa, Miron B. & Rudnicki, Witold R., 2010. "Feature Selection with the Boruta Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i11).
    2. Abolfazl Mollalo & Liang Mao & Parisa Rashidi & Gregory E. Glass, 2019. "A GIS-Based Artificial Neural Network Model for Spatial Distribution of Tuberculosis across the Continental United States," IJERPH, MDPI, vol. 16(1), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Munazza Fatima & Kara J. O’Keefe & Wenjia Wei & Sana Arshad & Oliver Gruebner, 2021. "Geospatial Analysis of COVID-19: A Scoping Review," IJERPH, MDPI, vol. 18(5), pages 1-14, February.
    2. Xin Jing & Jin Seo Cho, 2023. "Forecasting the Confirmed COVID-19 Cases Using Modal Regression," Working papers 2023rwp-217, Yonsei University, Yonsei Economics Research Institute.
    3. Seung-Hun Lee & Hyeon-Seong Ju & Sang-Hun Lee & Sung-Woo Kim & Hun-Young Park & Seung-Wan Kang & Young-Eun Song & Kiwon Lim & Hoeryong Jung, 2021. "Estimation of Health-Related Physical Fitness (HRPF) Levels of the General Public Using Artificial Neural Network with the National Fitness Award (NFA) Datasets," IJERPH, MDPI, vol. 18(19), pages 1-13, October.
    4. Jelena Musulin & Sandi Baressi Šegota & Daniel Štifanić & Ivan Lorencin & Nikola Anđelić & Tijana Šušteršič & Anđela Blagojević & Nenad Filipović & Tomislav Ćabov & Elitza Markova-Car, 2021. "Application of Artificial Intelligence-Based Regression Methods in the Problem of COVID-19 Spread Prediction: A Systematic Review," IJERPH, MDPI, vol. 18(8), pages 1-39, April.
    5. Giordano, Francesco & Milito, Sara & Parrella, Maria Lucia, 2023. "Linear and nonlinear effects explaining the risk of Covid-19 infection: an empirical analysis on real data from the USA," Socio-Economic Planning Sciences, Elsevier, vol. 90(C).
    6. Abolfazl Mollalo & Moosa Tatar, 2021. "Spatial Modeling of COVID-19 Vaccine Hesitancy in the United States," IJERPH, MDPI, vol. 18(18), pages 1-14, September.
    7. Lorenzo Gianquintieri & Maria Antonia Brovelli & Andrea Pagliosa & Gabriele Dassi & Piero Maria Brambilla & Rodolfo Bonora & Giuseppe Maria Sechi & Enrico Gianluca Caiani, 2022. "Generating High-Granularity COVID-19 Territorial Early Alerts Using Emergency Medical Services and Machine Learning," IJERPH, MDPI, vol. 19(15), pages 1-19, July.
    8. Abiodun O. Oluyomi & Sarah M. Gunter & Lauren M. Leining & Kristy O. Murray & Chris Amos, 2021. "COVID-19 Community Incidence and Associated Neighborhood-Level Characteristics in Houston, Texas, USA," IJERPH, MDPI, vol. 18(4), pages 1-15, February.
    9. Anil Babu Payedimarri & Diego Concina & Luigi Portinale & Massimo Canonico & Deborah Seys & Kris Vanhaecht & Massimiliano Panella, 2021. "Prediction Models for Public Health Containment Measures on COVID-19 Using Artificial Intelligence and Machine Learning: A Systematic Review," IJERPH, MDPI, vol. 18(9), pages 1-11, April.
    10. Xin Chen & Liangwen Xu & Zhigeng Pan, 2022. "Design and Preliminary Realization of a Screening and Early Warning Health Management System for Populations at High Risk for Depression," IJERPH, MDPI, vol. 19(6), pages 1-12, March.
    11. Abdallah S. A. Yaseen, 2022. "Impact of social determinants on COVID-19 infections: a comprehensive study from Saudi Arabia governorates," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-9, December.
    12. Sandi Baressi Šegota & Ivan Lorencin & Nikola Anđelić & Jelena Musulin & Daniel Štifanić & Matko Glučina & Saša Vlahinić & Zlatan Car, 2022. "Applying Regressive Machine Learning Techniques in Determination of COVID-19 Vaccinated Patients’ Influence on the Number of Confirmed and Deceased Patients," Mathematics, MDPI, vol. 10(16), pages 1-24, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tong, Jianfeng & Liu, Zhenxing & Zhang, Yong & Zheng, Xiujuan & Jin, Junyang, 2023. "Improved multi-gate mixture-of-experts framework for multi-step prediction of gas load," Energy, Elsevier, vol. 282(C).
    2. Asma Shaheen & Javed Iqbal, 2018. "Spatial Distribution and Mobility Assessment of Carcinogenic Heavy Metals in Soil Profiles Using Geostatistics and Random Forest, Boruta Algorithm," Sustainability, MDPI, vol. 10(3), pages 1-20, March.
    3. Ramón Ferri-García & María del Mar Rueda, 2022. "Variable selection in Propensity Score Adjustment to mitigate selection bias in online surveys," Statistical Papers, Springer, vol. 63(6), pages 1829-1881, December.
    4. Yvan Devaux & Lu Zhang & Andrew I. Lumley & Kanita Karaduzovic-Hadziabdic & Vincent Mooser & Simon Rousseau & Muhammad Shoaib & Venkata Satagopam & Muhamed Adilovic & Prashant Kumar Srivastava & Costa, 2024. "Development of a long noncoding RNA-based machine learning model to predict COVID-19 in-hospital mortality," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Ghosh, Indranil & Chaudhuri, Tamal Datta & Alfaro-Cortés, Esteban & Gámez, Matías & García, Noelia, 2022. "A hybrid approach to forecasting futures prices with simultaneous consideration of optimality in ensemble feature selection and advanced artificial intelligence," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    6. Mehmet Ronael & Tüzin Baycan, 2022. "Place-based factors affecting COVID-19 incidences in Turkey," Asia-Pacific Journal of Regional Science, Springer, vol. 6(3), pages 1053-1086, October.
    7. Conor Waldock & Bernhard Wegscheider & Dario Josi & Bárbara Borges Calegari & Jakob Brodersen & Luiz Jardim de Queiroz & Ole Seehausen, 2024. "Deconstructing the geography of human impacts on species’ natural distribution," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Manuel J. García Rodríguez & Vicente Rodríguez Montequín & Francisco Ortega Fernández & Joaquín M. Villanueva Balsera, 2019. "Public Procurement Announcements in Spain: Regulations, Data Analysis, and Award Price Estimator Using Machine Learning," Complexity, Hindawi, vol. 2019, pages 1-20, November.
    9. Sangjin Kim & Jong-Min Kim, 2019. "Two-Stage Classification with SIS Using a New Filter Ranking Method in High Throughput Data," Mathematics, MDPI, vol. 7(6), pages 1-16, May.
    10. Arjan S. Gosal & Janine A. McMahon & Katharine M. Bowgen & Catherine H. Hoppe & Guy Ziv, 2021. "Identifying and Mapping Groups of Protected Area Visitors by Environmental Awareness," Land, MDPI, vol. 10(6), pages 1-14, May.
    11. Foutzopoulos, Giorgos & Pandis, Nikolaos & Tsagris, Michail, 2024. "Predicting full retirement attainment of NBA players," MPRA Paper 121540, University Library of Munich, Germany.
    12. Zhao-Yue Chen & Hervé Petetin & Raúl Fernando Méndez Turrubiates & Hicham Achebak & Carlos Pérez García-Pando & Joan Ballester, 2024. "Population exposure to multiple air pollutants and its compound episodes in Europe," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Schrader, Silja & Graham, Sonia & Campbell, Rebecca & Height, Kaitlyn & Hawkes, Gina, 2024. "Grower attitudes and practices toward area-wide management of cropping weeds in Australia," Land Use Policy, Elsevier, vol. 137(C).
    14. Bram Janssens & Matthias Bogaert & Mathijs Maton, 2023. "Predicting the next Pogačar: a data analytical approach to detect young professional cycling talents," Annals of Operations Research, Springer, vol. 325(1), pages 557-588, June.
    15. Cooray, Upul & Watt, Richard G. & Tsakos, Georgios & Heilmann, Anja & Hariyama, Masanori & Yamamoto, Takafumi & Kuruppuarachchige, Isuruni & Kondo, Katsunori & Osaka, Ken & Aida, Jun, 2021. "Importance of socioeconomic factors in predicting tooth loss among older adults in Japan: Evidence from a machine learning analysis," Social Science & Medicine, Elsevier, vol. 291(C).
    16. Simon Besnard & Nuno Carvalhais & M Altaf Arain & Andrew Black & Benjamin Brede & Nina Buchmann & Jiquan Chen & Jan G P W Clevers & Loïc P Dutrieux & Fabian Gans & Martin Herold & Martin Jung & Yoshik, 2019. "Memory effects of climate and vegetation affecting net ecosystem CO2 fluxes in global forests," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-22, February.
    17. Francesco Sartor & Jonathan P. Moore & Hans-Peter Kubis, 2021. "Plasma Interleukin-10 and Cholesterol Levels May Inform about Interdependences between Fitness and Fatness in Healthy Individuals," IJERPH, MDPI, vol. 18(4), pages 1-19, February.
    18. Nawin Raj, 2022. "Prediction of Sea Level with Vertical Land Movement Correction Using Deep Learning," Mathematics, MDPI, vol. 10(23), pages 1-23, November.
    19. Piotr Pomorski & Denise Gorse, 2023. "Improving Portfolio Performance Using a Novel Method for Predicting Financial Regimes," Papers 2310.04536, arXiv.org.
    20. Caperna, Giulio & Colagrossi, Marco & Geraci, Andrea & Mazzarella, Gianluca, 2022. "A babel of web-searches: Googling unemployment during the pandemic," Labour Economics, Elsevier, vol. 74(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:12:p:4204-:d:370702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.