Author
Listed:
- Chen Cao
- Bowei Ding
- Qing Li
- Devin Kwok
- Jingjing Wu
- Quan Long
Abstract
The transcriptome-wide association study (TWAS) has emerged as one of several promising techniques for integrating multi-scale ‘omics’ data into traditional genome-wide association studies (GWAS). Unlike GWAS, which associates phenotypic variance directly with genetic variants, TWAS uses a reference dataset to train a predictive model for gene expressions, which allows it to associate phenotype with variants through the mediating effect of expressions. Although effective, this core innovation of TWAS is poorly understood, since the predictive accuracy of the genotype-expression model is generally low and further bounded by expression heritability. This raises the question: to what degree does the accuracy of the expression model affect the power of TWAS? Furthermore, would replacing predictions with actual, experimentally determined expressions improve power? To answer these questions, we compared the power of GWAS, TWAS, and a hypothetical protocol utilizing real expression data. We derived non-centrality parameters (NCPs) for linear mixed models (LMMs) to enable closed-form calculations of statistical power that do not rely on specific protocol implementations. We examined two representative scenarios: causality (genotype contributes to phenotype through expression) and pleiotropy (genotype contributes directly to both phenotype and expression), and also tested the effects of various properties including expression heritability. Our analysis reveals two main outcomes: (1) Under pleiotropy, the use of predicted expressions in TWAS is superior to actual expressions. This explains why TWAS can function with weak expression models, and shows that TWAS remains relevant even when real expressions are available. (2) GWAS outperforms TWAS when expression heritability is below a threshold of 0.04 under causality, or 0.06 under pleiotropy. Analysis of existing publications suggests that TWAS has been misapplied in place of GWAS, in situations where expression heritability is low.Author summary: We compared the effectiveness of three methods for finding genetic effects on disease in order to quantify their strengths and help researchers choose the best protocol for their data. The genome-wide association study (GWAS) is the standard method for identifying how the genetic differences between individuals relate to disease. Recently, the transcriptome-wide association study (TWAS) has improved GWAS by also estimating the effect of each genetic variant on the activity level (or expression) of genes related to disease. The effectiveness of TWAS is surprising because its estimates of gene expressions are very inaccurate, so we ask if a method using real expression data instead of estimates would perform better. Unlike past studies, which only use simulation to compare these methods, we incorporate novel statistical calculations to make our comparisons more accurate and universally applicable. We discover that depending on the type of relationship between genetics, gene expression, and disease, the estimates used by TWAS could be actually more relevant than real gene expressions. We also find that TWAS is not always better than GWAS when the relationship between genetics and expression is weak and identify specific turning points where past studies have incorrectly used TWAS instead of GWAS.
Suggested Citation
Chen Cao & Bowei Ding & Qing Li & Devin Kwok & Jingjing Wu & Quan Long, 2021.
"Power analysis of transcriptome-wide association study: Implications for practical protocol choice,"
PLOS Genetics, Public Library of Science, vol. 17(2), pages 1-20, February.
Handle:
RePEc:plo:pgen00:1009405
DOI: 10.1371/journal.pgen.1009405
Download full text from publisher
Citations
Citations are extracted by the
CitEc Project, subscribe to its
RSS feed for this item.
Cited by:
- Qile Dai & Geyu Zhou & Hongyu Zhao & Urmo Võsa & Lude Franke & Alexis Battle & Alexander Teumer & Terho Lehtimäki & Olli T. Raitakari & Tõnu Esko & Michael P. Epstein & Jingjing Yang, 2023.
"OTTERS: a powerful TWAS framework leveraging summary-level reference data,"
Nature Communications, Nature, vol. 14(1), pages 1-13, December.
- Jingni He & Wanqing Wen & Alicia Beeghly & Zhishan Chen & Chen Cao & Xiao-Ou Shu & Wei Zheng & Quan Long & Xingyi Guo, 2022.
"Integrating transcription factor occupancy with transcriptome-wide association analysis identifies susceptibility genes in human cancers,"
Nature Communications, Nature, vol. 13(1), pages 1-15, December.
- Arjun Bhattacharya & Anastasia N. Freedman & Vennela Avula & Rebeca Harris & Weifang Liu & Calvin Pan & Aldons J. Lusis & Robert M. Joseph & Lisa Smeester & Hadley J. Hartwell & Karl C. K. Kuban & Car, 2022.
"Placental genomics mediates genetic associations with complex health traits and disease,"
Nature Communications, Nature, vol. 13(1), pages 1-15, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1009405. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.