IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-44710-8.html
   My bibliography  Save this article

Haplotype-aware modeling of cis-regulatory effects highlights the gaps remaining in eQTL data

Author

Listed:
  • Nava Ehsan

    (The Scripps Research Institute)

  • Bence M. Kotis

    (The Scripps Research Institute)

  • Stephane E. Castel

    (Columbia University
    New York Genome Center)

  • Eric J. Song

    (The Scripps Research Institute)

  • Nicholas Mancuso

    (University of Southern)

  • Pejman Mohammadi

    (The Scripps Research Institute
    Center for Immunity and Immunotherapies, Seattle Children’s Research Institute
    University of Washington School of Medicine
    University of Washington)

Abstract

Expression Quantitative Trait Loci (eQTLs) are critical to understanding the mechanisms underlying disease-associated genomic loci. Nearly all protein-coding genes in the human genome have been associated with one or more eQTLs. Here we introduce a multi-variant generalization of allelic Fold Change (aFC), aFC-n, to enable quantification of the cis-regulatory effects in multi-eQTL genes under the assumption that all eQTLs are known and conditionally independent. Applying aFC-n to 458,465 eQTLs in the Genotype-Tissue Expression (GTEx) project data, we demonstrate significant improvements in accuracy over the original model in estimating the eQTL effect sizes and in predicting genetically regulated gene expression over the current tools. We characterize some of the empirical properties of the eQTL data and use this framework to assess the current state of eQTL data in terms of characterizing cis-regulatory landscape in individual genomes. Notably, we show that 77.4% of the genes with an allelic imbalance in a sample show 0.5 log2 fold or more of residual imbalance after accounting for the eQTL data underlining the remaining gap in characterizing regulatory landscape in individual genomes. We further contrast this gap across tissue types, and ancestry backgrounds to identify its correlates and guide future studies.

Suggested Citation

  • Nava Ehsan & Bence M. Kotis & Stephane E. Castel & Eric J. Song & Nicholas Mancuso & Pejman Mohammadi, 2024. "Haplotype-aware modeling of cis-regulatory effects highlights the gaps remaining in eQTL data," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44710-8
    DOI: 10.1038/s41467-024-44710-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-44710-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-44710-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yanyu Liang & François Aguet & Alvaro N. Barbeira & Kristin Ardlie & Hae Kyung Im, 2021. "A scalable unified framework of total and allele-specific counts for cis-QTL, fine-mapping, and prediction," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Stephane E. Castel & Pejman Mohammadi & Wendy K. Chung & Yufeng Shen & Tuuli Lappalainen, 2016. "Rare variant phasing and haplotypic expression from RNA sequencing with phASER," Nature Communications, Nature, vol. 7(1), pages 1-6, November.
    3. Xin Li & Yungil Kim & Emily K. Tsang & Joe R. Davis & Farhan N. Damani & Colby Chiang & Gaelen T. Hess & Zachary Zappala & Benjamin J. Strober & Alexandra J. Scott & Amy Li & Andrea Ganna & Michael C., 2017. "The impact of rare variation on gene expression across tissues," Nature, Nature, vol. 550(7675), pages 239-243, October.
    4. Kevin L Keys & Angel C Y Mak & Marquitta J White & Walter L Eckalbar & Andrew W Dahl & Joel Mefford & Anna V Mikhaylova & María G Contreras & Jennifer R Elhawary & Celeste Eng & Donglei Hu & Scott Hun, 2020. "On the cross-population generalizability of gene expression prediction models," PLOS Genetics, Public Library of Science, vol. 16(8), pages 1-28, August.
    5. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    6. Tuuli Lappalainen & Michael Sammeth & Marc R. Friedländer & Peter A. C. ‘t Hoen & Jean Monlong & Manuel A. Rivas & Mar Gonzàlez-Porta & Natalja Kurbatova & Thasso Griebel & Pedro G. Ferreira & Matthia, 2013. "Transcriptome and genome sequencing uncovers functional variation in humans," Nature, Nature, vol. 501(7468), pages 506-511, September.
    7. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qile Dai & Geyu Zhou & Hongyu Zhao & Urmo Võsa & Lude Franke & Alexis Battle & Alexander Teumer & Terho Lehtimäki & Olli T. Raitakari & Tõnu Esko & Michael P. Epstein & Jingjing Yang, 2023. "OTTERS: a powerful TWAS framework leveraging summary-level reference data," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    3. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    4. Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
    5. Wang, Qiao & Zhou, Wei & Cheng, Yonggang & Ma, Gang & Chang, Xiaolin & Miao, Yu & Chen, E, 2018. "Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 120-145.
    6. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    7. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    8. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    9. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022. "Specification Choices in Quantile Regression for Empirical Macroeconomics," Working Papers 22-25, Federal Reserve Bank of Cleveland.
    10. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    11. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    12. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    13. Enrico Bergamini & Georg Zachmann, 2020. "Exploring EU’s Regional Potential in Low-Carbon Technologies," Sustainability, MDPI, vol. 13(1), pages 1-28, December.
    14. Qianyun Li & Runmin Shi & Faming Liang, 2019. "Drug sensitivity prediction with high-dimensional mixture regression," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-18, February.
    15. Jung, Yoon Mo & Whang, Joyce Jiyoung & Yun, Sangwoon, 2020. "Sparse probabilistic K-means," Applied Mathematics and Computation, Elsevier, vol. 382(C).
    16. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    17. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
    18. Soave, David & Lawless, Jerald F., 2023. "Regularized regression for two phase failure time studies," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    19. Moharil Janhavi & May Paul & Gaile Daniel P. & Blair Rachael Hageman, 2016. "Belief propagation in genotype-phenotype networks," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(1), pages 39-53, March.
    20. Won Hee Lee, 2023. "The Choice of Machine Learning Algorithms Impacts the Association between Brain-Predicted Age Difference and Cognitive Function," Mathematics, MDPI, vol. 11(5), pages 1-15, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44710-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.