IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36726-3.html
   My bibliography  Save this article

Renewable formate from sunlight, biomass and carbon dioxide in a photoelectrochemical cell

Author

Listed:
  • Yuyang Pan

    (Southeast University)

  • Huiyan Zhang

    (Southeast University)

  • Bowen Zhang

    (Southeast University)

  • Feng Gong

    (Southeast University)

  • Jianyong Feng

    (Nanjing University)

  • Huiting Huang

    (Nanjing University)

  • Srinivas Vanka

    (McGill University)

  • Ronglei Fan

    (Soochow University)

  • Qi Cao

    (Southeast University)

  • Mingrong Shen

    (Soochow University)

  • Zhaosheng Li

    (Nanjing University)

  • Zhigang Zou

    (Nanjing University)

  • Rui Xiao

    (Southeast University)

  • Sheng Chu

    (Southeast University)

Abstract

The sustainable production of chemicals and fuels from abundant solar energy and renewable carbon sources provides a promising route to reduce climate-changing CO2 emissions and our dependence on fossil resources. Here, we demonstrate solar-powered formate production from readily available biomass wastes and CO2 feedstocks via photoelectrochemistry. Non-precious NiOOH/α-Fe2O3 and Bi/GaN/Si wafer were used as photoanode and photocathode, respectively. Concurrent photoanodic biomass oxidation and photocathodic CO2 reduction towards formate with high Faradaic efficiencies over 85% were achieved at both photoelectrodes. The integrated biomass-CO2 photoelectrolysis system reduces the cell voltage by 32% due to the thermodynamically favorable biomass oxidation over conventional water oxidation. Moreover, we show solar-driven formate production with a record-high yield of 23.3 μmol cm−2 h−1 as well as high robustness using the hybrid photoelectrode system. The present work opens opportunities for sustainable chemical and fuel production using abundant and renewable resources on earth—sunlight, biomass and CO2.

Suggested Citation

  • Yuyang Pan & Huiyan Zhang & Bowen Zhang & Feng Gong & Jianyong Feng & Huiting Huang & Srinivas Vanka & Ronglei Fan & Qi Cao & Mingrong Shen & Zhaosheng Li & Zhigang Zou & Rui Xiao & Sheng Chu, 2023. "Renewable formate from sunlight, biomass and carbon dioxide in a photoelectrochemical cell," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36726-3
    DOI: 10.1038/s41467-023-36726-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36726-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36726-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sumit Verma & Shawn Lu & Paul J. A. Kenis, 2019. "Co-electrolysis of CO2 and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption," Nature Energy, Nature, vol. 4(6), pages 466-474, June.
    2. Ji-Wook Jang & Chun Du & Yifan Ye & Yongjing Lin & Xiahui Yao & James Thorne & Erik Liu & Gregory McMahon & Junfa Zhu & Ali Javey & Jinghua Guo & Dunwei Wang, 2015. "Enabling unassisted solar water splitting by iron oxide and silicon," Nature Communications, Nature, vol. 6(1), pages 1-5, November.
    3. Michael T. Bender & Xin Yuan & Kyoung-Shin Choi, 2020. "Alcohol oxidation as alternative anode reactions paired with (photo)electrochemical fuel production reactions," Nature Communications, Nature, vol. 11(1), pages 1-4, December.
    4. Zuyun He & Jinwoo Hwang & Zhiheng Gong & Mengzhen Zhou & Nian Zhang & Xiongwu Kang & Jeong Woo Han & Yan Chen, 2022. "Promoting biomass electrooxidation via modulating proton and oxygen anion deintercalation in hydroxide," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Jonggeol Na & Bora Seo & Jeongnam Kim & Chan Woo Lee & Hyunjoo Lee & Yun Jeong Hwang & Byoung Koun Min & Dong Ki Lee & Hyung-Suk Oh & Ung Lee, 2019. "General technoeconomic analysis for electrochemical coproduction coupling carbon dioxide reduction with organic oxidation," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    6. Hua Zhou & Yue Ren & Zhenhua Li & Ming Xu & Ye Wang & Ruixiang Ge & Xianggui Kong & Lirong Zheng & Haohong Duan, 2021. "Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H2 fuel," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    7. Min Wang & Meijiang Liu & Jianmin Lu & Feng Wang, 2020. "Photo splitting of bio-polyols and sugars to methanol and syngas," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Qi & Yadong Du & Qi Yang & Na Jiang & Jiachun Li & Yi Ma & Yangjun Ma & Xin Zhao & Jieshan Qiu, 2023. "Energy-saving and product-oriented hydrogen peroxide electrosynthesis enabled by electrochemistry pairing and product engineering," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Hua Zhou & Yue Ren & Bingxin Yao & Zhenhua Li & Ming Xu & Lina Ma & Xianggui Kong & Lirong Zheng & Mingfei Shao & Haohong Duan, 2023. "Scalable electrosynthesis of commodity chemicals from biomass by suppressing non-Faradaic transformations," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Fenghui Ye & Shishi Zhang & Qingqing Cheng & Yongde Long & Dong Liu & Rajib Paul & Yunming Fang & Yaqiong Su & Liangti Qu & Liming Dai & Chuangang Hu, 2023. "The role of oxygen-vacancy in bifunctional indium oxyhydroxide catalysts for electrochemical coupling of biomass valorization with CO2 conversion," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Ruiz-López, Estela & Gandara-Loe, Jesús & Baena-Moreno, Francisco & Reina, Tomas Ramirez & Odriozola, José Antonio, 2022. "Electrocatalytic CO2 conversion to C2 products: Catalysts design, market perspectives and techno-economic aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Yang Liu & Huishan Shang & Bing Zhang & Dongpeng Yan & Xu Xiang, 2024. "Surface fluorination of BiVO4 for the photoelectrochemical oxidation of glycerol to formic acid," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Xiaoyi Jiang & Le Ke & Kai Zhao & Xiaoyu Yan & Hongbo Wang & Xiaojuan Cao & Yuchen Liu & Lingjiao Li & Yifei Sun & Zhiping Wang & Dai Dang & Ning Yan, 2024. "Integrating hydrogen utilization in CO2 electrolysis with reduced energy loss," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Ke Xie & Adnan Ozden & Rui Kai Miao & Yuhang Li & David Sinton & Edward H. Sargent, 2022. "Eliminating the need for anodic gas separation in CO2 electroreduction systems via liquid-to-liquid anodic upgrading," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Gui Zhao & Jiayi Lin & Mengying Lu & Lina Li & Pengtao Xu & Xi Liu & Liwei Chen, 2024. "Potential cycling boosts the electrochemical conversion of polyethylene terephthalate-derived alcohol into valuable chemicals," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Yuantao Peng & Jie Yang & Chenqiang Deng & Jin Deng & Li Shen & Yao Fu, 2023. "Acetolysis of waste polyethylene terephthalate for upcycling and life-cycle assessment study," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Kumar, Manish & Bolan, Shiv & Padhye, Lokesh P. & Konarova, Muxina & Foong, Shin Ying & Lam, Su Shiung & Wagland, Stuart & Cao, Runzi & Li, Yang & Batalha, Nuno & Ahmed, Mohamed & Pandey, Ashok & Sidd, 2023. "Retrieving back plastic wastes for conversion to value added petrochemicals: opportunities, challenges and outlooks," Applied Energy, Elsevier, vol. 345(C).
    11. Lin Chen & Chang Yu & Xuedan Song & Junting Dong & Jiawei Mu & Jieshan Qiu, 2024. "Integrated electrochemical and chemical system for ampere-level production of terephthalic acid alternatives and hydrogen," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Jiajie Hou & Bingjun Xu & Qi Lu, 2024. "Influence of electric double layer rigidity on CO adsorption and electroreduction rate," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Wei Liu & Pengbo Zhai & Aowen Li & Bo Wei & Kunpeng Si & Yi Wei & Xingguo Wang & Guangda Zhu & Qian Chen & Xiaokang Gu & Ruifeng Zhang & Wu Zhou & Yongji Gong, 2022. "Electrochemical CO2 reduction to ethylene by ultrathin CuO nanoplate arrays," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Hamdani, I.R. & Bhaskarwar, A.N., 2021. "Recent progress in material selection and device designs for photoelectrochemical water-splitting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    15. Moreira, Rui & Bimbela, Fernando & Gandía, Luis M. & Ferreira, Abel & Sánchez, Jose Luis & Portugal, António, 2021. "Oxidative steam reforming of glycerol. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    16. Stephanie J. Boyd & Run Long & Niall J. English, 2022. "Electric Field Effects on Photoelectrochemical Water Splitting: Perspectives and Outlook," Energies, MDPI, vol. 15(4), pages 1-16, February.
    17. McKenna K. Goetz & Michael T. Bender & Kyoung-Shin Choi, 2022. "Predictive control of selective secondary alcohol oxidation of glycerol on NiOOH," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. Aby Cheruvathoor Poulose & Miroslav Medveď & Vasudeva Rao Bakuru & Akashdeep Sharma & Deepika Singh & Suresh Babu Kalidindi & Hugo Bares & Michal Otyepka & Kolleboyina Jayaramulu & Aristides Bakandrit, 2023. "Acidic graphene organocatalyst for the superior transformation of wastes into high-added-value chemicals," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. Rashmi Mehrotra & Dongrak Oh & Ji-Wook Jang, 2021. "Unassisted selective solar hydrogen peroxide production by an oxidised buckypaper-integrated perovskite photocathode," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    20. Zeng, Qingyi & Bai, Jing & Li, Jinhua & Li, Linsen & Xia, Ligang & Zhou, Baoxue & Sun, Yugang, 2018. "Highly-stable and efficient photocatalytic fuel cell based on an epitaxial TiO2/WO3/W nanothorn photoanode and enhanced radical reactions for simultaneous electricity production and wastewater treatme," Applied Energy, Elsevier, vol. 220(C), pages 127-137.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36726-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.