IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v305y2024ics0360544224020516.html
   My bibliography  Save this article

Biochar-assisted water electrolysis for energy-saving hydrogen production: Evolution of corn straw-based biochar structure and its enhanced effect on Cr(VI) removal

Author

Listed:
  • Ying, Zhi
  • Du, Yueyue
  • Gu, Xufei
  • Yu, Xiaosha
  • Zheng, Xiaoyuan
  • Dou, Binlin
  • Cui, Guomin

Abstract

Biochar-assisted water electrolysis (BAWE) offers a novel strategy for clean hydrogen production and biochar utilization. Here we propose the production of activated biochar via limited biochar electrooxidation over Ni foam and its application to remove Cr(VI). The corn straw-based biochar oxidation reaction delivers 100 mA cm−2@1.528 V vs. RHE, and reaches 98 % Faradaic efficiency for H2 production. The electrical consumption of 4.16 kWh Nm−3 H2 for BAWE is lower than 5.07 kWh Nm−3 H2 for water electrolysis. After 10 h electrolysis at 5 mA cm−2, due to the direct oxidation of biochar at electrode and indirect oxidation by reactive oxygen species in solution, the activated biochar is formed with increased pore size and specific surface area, and full of –OH, C–O, CO, and COOH groups. The removal rate of Cr(VI) by activated biochar reaches 72.79 %, much higher than the 10.96 % for original biochar, which is attributed to the well-developed mesoporous structure of activated biochar for Cr(VI) adsorption, and the enriched –OH and COOH for Cr(VI) reduction and Cr(III) complexation. These findings confirm the feasibility of electrochemical activation of biochar in BAWE process, which demonstrate a new avenue for biochar upgrading and energy-saving hydrogen production for a sustainable future.

Suggested Citation

  • Ying, Zhi & Du, Yueyue & Gu, Xufei & Yu, Xiaosha & Zheng, Xiaoyuan & Dou, Binlin & Cui, Guomin, 2024. "Biochar-assisted water electrolysis for energy-saving hydrogen production: Evolution of corn straw-based biochar structure and its enhanced effect on Cr(VI) removal," Energy, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:energy:v:305:y:2024:i:c:s0360544224020516
    DOI: 10.1016/j.energy.2024.132277
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224020516
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132277?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    2. Hu, Bo & Xu, Lianfei & Li, Yang & Sun, Fei & Wang, Zhuozhi & Yang, Mengchi & Zhang, Yangyang & Kong, Wenwen & Shen, Boxiong & Wang, Xin & Yang, Jiancheng, 2024. "Biochar and Fe2+ mediation in hydrogen production by water electrolysis: Effects of physicochemical properties of biochars," Energy, Elsevier, vol. 297(C).
    3. Burton, N.A. & Padilla, R.V. & Rose, A. & Habibullah, H., 2021. "Increasing the efficiency of hydrogen production from solar powered water electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Ju, HyungKuk & Badwal, Sukhvinder & Giddey, Sarbjit, 2018. "A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production," Applied Energy, Elsevier, vol. 231(C), pages 502-533.
    5. Chen, Shuai & Zhou, Wei & Ding, Yani & Zhao, Guangbo & Gao, Jihui, 2021. "Fe3+-mediated coal-assisted water electrolysis for hydrogen production: Roles of mineral matter and oxygen-containing functional groups in coal," Energy, Elsevier, vol. 220(C).
    6. Wu-Jun Liu & Zhuoran Xu & Dongting Zhao & Xiao-Qiang Pan & Hong-Chao Li & Xiao Hu & Zhi-Yong Fan & Wei-Kang Wang & Guo-Hua Zhao & Song Jin & George W. Huber & Han-Qing Yu, 2020. "Efficient electrochemical production of glucaric acid and H2 via glucose electrolysis," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    7. Gong, Xuzhong & Wang, Mingyong & Liu, Yang & Wang, Zhi & Guo, Zhancheng, 2014. "Variation with time of cell voltage for coal slurry electrolysis in sulfuric acid," Energy, Elsevier, vol. 65(C), pages 233-239.
    8. Hu Zhao & Dan Lu & Jiarui Wang & Wenguang Tu & Dan Wu & See Wee Koh & Pingqi Gao & Zhichuan J. Xu & Sili Deng & Yan Zhou & Bo You & Hong Li, 2021. "Raw biomass electroreforming coupled to green hydrogen generation," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    9. Yuyang Pan & Huiyan Zhang & Bowen Zhang & Feng Gong & Jianyong Feng & Huiting Huang & Srinivas Vanka & Ronglei Fan & Qi Cao & Mingrong Shen & Zhaosheng Li & Zhigang Zou & Rui Xiao & Sheng Chu, 2023. "Renewable formate from sunlight, biomass and carbon dioxide in a photoelectrochemical cell," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Zheng-Jie Chen & Jiuyi Dong & Jiajing Wu & Qiting Shao & Na Luo & Minwei Xu & Yuanmiao Sun & Yongbing Tang & Jing Peng & Hui-Ming Cheng, 2023. "Acidic enol electrooxidation-coupled hydrogen production with ampere-level current density," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Chen, Wei-Hsin & Farooq, Wasif & Shahbaz, Muhammad & Naqvi, Salman Raza & Ali, Imtiaz & Al-Ansari, Tareq & Saidina Amin, Nor Aishah, 2021. "Current status of biohydrogen production from lignocellulosic biomass, technical challenges and commercial potential through pyrolysis process," Energy, Elsevier, vol. 226(C).
    12. Ying, Zhi & Geng, Zhen & Zheng, Xiaoyuan & Dou, Binlin & Cui, Guomin, 2022. "Improving water electrolysis assisted by anodic biochar oxidation for clean hydrogen production," Energy, Elsevier, vol. 238(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Bo & Xu, Lianfei & Li, Yang & Sun, Fei & Wang, Zhuozhi & Yang, Mengchi & Zhang, Yangyang & Kong, Wenwen & Shen, Boxiong & Wang, Xin & Yang, Jiancheng, 2024. "Biochar and Fe2+ mediation in hydrogen production by water electrolysis: Effects of physicochemical properties of biochars," Energy, Elsevier, vol. 297(C).
    2. Zhou, Wei & Chen, Shuai & Meng, Xiaoxiao & Li, Jiayi & Huang, Yuming & Gao, Jihui & Zhao, Guangbo & He, Yong & Qin, Yukun, 2022. "Two-step coal-assisted water electrolysis for energy-saving hydrogen production at cell voltage of 1.2 V with current densities larger than 150 mA/cm2," Energy, Elsevier, vol. 260(C).
    3. Ying, Zhi & Geng, Zhen & Zheng, Xiaoyuan & Dou, Binlin & Cui, Guomin, 2022. "Improving water electrolysis assisted by anodic biochar oxidation for clean hydrogen production," Energy, Elsevier, vol. 238(PB).
    4. Huang, Yuming & Zhou, Wei & Xie, Liang & Li, Jiayi & He, Yong & Chen, Shuai & Meng, Xiaoxiao & Gao, Jihui & Qin, Yukun, 2022. "Edge and defect sites in porous activated coke enable highly efficient carbon-assisted water electrolysis for energy-saving hydrogen production," Renewable Energy, Elsevier, vol. 195(C), pages 283-292.
    5. Fan, Yuqiang & Guan, Jun & He, Demin & Hong, Yu & Zhang, Qiumin, 2023. "The influence of inherent minerals on the constant-current electrolysis process of coal-water slurry," Energy, Elsevier, vol. 285(C).
    6. Onwuemezie, Linus & Gohari Darabkhani, Hamidreza, 2024. "Oxy-hydrogen, solar and wind assisted hydrogen (H2) recovery from municipal plastic waste (MPW) and saltwater electrolysis for better environmental systems and ocean cleanup," Energy, Elsevier, vol. 301(C).
    7. Kou, Kaikai & Zhou, Wei & Chen, Shuai & Gao, Jihui, 2021. "Mechanism investigation of carboxyl functional groups catalytic oxidation in coal assisted water electrolysis cell," Energy, Elsevier, vol. 226(C).
    8. Chen, Shuai & Zhou, Wei & Ding, Yani & Zhao, Guangbo & Gao, Jihui, 2021. "Fe3+-mediated coal-assisted water electrolysis for hydrogen production: Roles of mineral matter and oxygen-containing functional groups in coal," Energy, Elsevier, vol. 220(C).
    9. Fan Li & Dong Liu & Ke Sun & Songheng Yang & Fangzheng Peng & Kexin Zhang & Guodong Guo & Yuan Si, 2024. "Towards a Future Hydrogen Supply Chain: A Review of Technologies and Challenges," Sustainability, MDPI, vol. 16(5), pages 1-36, February.
    10. Giosuè Giacoppo & Stefano Trocino & Carmelo Lo Vecchio & Vincenzo Baglio & María I. Díez-García & Antonino Salvatore Aricò & Orazio Barbera, 2023. "Numerical 3D Model of a Novel Photoelectrolysis Tandem Cell with Solid Electrolyte for Green Hydrogen Production," Energies, MDPI, vol. 16(4), pages 1-12, February.
    11. Celiktas, Melih Soner & Alptekin, Fikret Muge, 2019. "Conversion of model biomass to carbon-based material with high conductivity by using carbonization," Energy, Elsevier, vol. 188(C).
    12. Liu, Hongwei & Wang, Yongzhen & Lv, Liang & Liu, Xiao & Wang, Ziqi & Liu, Jun, 2023. "Oxygen-enriched hierarchical porous carbons derived from lignite for high-performance supercapacitors," Energy, Elsevier, vol. 269(C).
    13. Ren, Yi & Wang, Zhiyong & Chen, Jianbiao & Gao, Haojie & Guo, Kai & Wang, Xu & Wang, Xiaoyuan & Wang, Yinfeng & Chen, Haijun & Zhu, Jinjiao & Zhu, Yuezhao, 2023. "Effect of water/acetic acid washing pretreatment on biomass chemical looping gasification (BCLG) using cost-effective oxygen carrier from iron-rich sludge ash," Energy, Elsevier, vol. 272(C).
    14. César Berna-Escriche & Carlos Vargas-Salgado & David Alfonso-Solar & Alberto Escrivá-Castells, 2022. "Hydrogen Production from Surplus Electricity Generated by an Autonomous Renewable System: Scenario 2040 on Grand Canary Island, Spain," Sustainability, MDPI, vol. 14(19), pages 1-29, September.
    15. Jun Qi & Yadong Du & Qi Yang & Na Jiang & Jiachun Li & Yi Ma & Yangjun Ma & Xin Zhao & Jieshan Qiu, 2023. "Energy-saving and product-oriented hydrogen peroxide electrosynthesis enabled by electrochemistry pairing and product engineering," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Bo Wang & Jie Yu & Hui Liao & Wenkun Zhu & Pingping Ding & Jian Zhou, 2020. "Adsorption of Lead (II) from Aqueous Solution with High Efficiency by Hydrothermal Biochar Derived from Honey," IJERPH, MDPI, vol. 17(10), pages 1-13, May.
    17. Bhandari, Ramchandra, 2022. "Green hydrogen production potential in West Africa – Case of Niger," Renewable Energy, Elsevier, vol. 196(C), pages 800-811.
    18. Setter, C. & Oliveira, T.J.P., 2022. "Evaluation of the physical-mechanical and energy properties of coffee husk briquettes with kraft lignin during slow pyrolysis," Renewable Energy, Elsevier, vol. 189(C), pages 1007-1019.
    19. Fengyuan Yan & Xiaolong Han & Qianwei Cheng & Yamin Yan & Qi Liao & Yongtu Liang, 2022. "Scenario-Based Comparative Analysis for Coupling Electricity and Hydrogen Storage in Clean Oilfield Energy Supply System," Energies, MDPI, vol. 15(6), pages 1-28, March.
    20. Efstathios E. Michaelides, 2021. "Thermodynamics, Energy Dissipation, and Figures of Merit of Energy Storage Systems—A Critical Review," Energies, MDPI, vol. 14(19), pages 1-41, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:305:y:2024:i:c:s0360544224020516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.