IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-12744-y.html
   My bibliography  Save this article

General technoeconomic analysis for electrochemical coproduction coupling carbon dioxide reduction with organic oxidation

Author

Listed:
  • Jonggeol Na

    (Korea Institute of Science and Technology (KIST)
    Carnegie Mellon University)

  • Bora Seo

    (Korea Institute of Science and Technology (KIST))

  • Jeongnam Kim

    (Korea Institute of Science and Technology (KIST)
    Seoul National University)

  • Chan Woo Lee

    (Kookmin University)

  • Hyunjoo Lee

    (Korea Institute of Science and Technology (KIST)
    Korea University of Science and Technology (UST))

  • Yun Jeong Hwang

    (Korea Institute of Science and Technology (KIST)
    Korea University of Science and Technology (UST)
    Yonsei University)

  • Byoung Koun Min

    (Korea Institute of Science and Technology (KIST)
    Green School, Korea University)

  • Dong Ki Lee

    (Korea Institute of Science and Technology (KIST))

  • Hyung-Suk Oh

    (Korea Institute of Science and Technology (KIST)
    Korea University of Science and Technology (UST))

  • Ung Lee

    (Korea Institute of Science and Technology (KIST)
    Korea University of Science and Technology (UST)
    Green School, Korea University)

Abstract

Electrochemical processes coupling carbon dioxide reduction reactions with organic oxidation reactions are promising techniques for producing clean chemicals and utilizing renewable energy. However, assessments of the economics of the coupling technology remain questionable due to diverse product combinations and significant process design variability. Here, we report a technoeconomic analysis of electrochemical carbon dioxide reduction reaction–organic oxidation reaction coproduction via conceptual process design and thereby propose potential economic combinations. We first develop a fully automated process synthesis framework to guide process simulations, which are then employed to predict the levelized costs of chemicals. We then identify the global sensitivity of current density, Faraday efficiency, and overpotential across 295 electrochemical coproduction processes to both understand and predict the levelized costs of chemicals at various technology levels. The analysis highlights the promise that coupling the carbon dioxide reduction reaction with the value-added organic oxidation reaction can secure significant economic feasibility.

Suggested Citation

  • Jonggeol Na & Bora Seo & Jeongnam Kim & Chan Woo Lee & Hyunjoo Lee & Yun Jeong Hwang & Byoung Koun Min & Dong Ki Lee & Hyung-Suk Oh & Ung Lee, 2019. "General technoeconomic analysis for electrochemical coproduction coupling carbon dioxide reduction with organic oxidation," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12744-y
    DOI: 10.1038/s41467-019-12744-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-12744-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-12744-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ke Xie & Adnan Ozden & Rui Kai Miao & Yuhang Li & David Sinton & Edward H. Sargent, 2022. "Eliminating the need for anodic gas separation in CO2 electroreduction systems via liquid-to-liquid anodic upgrading," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Jun Qi & Yadong Du & Qi Yang & Na Jiang & Jiachun Li & Yi Ma & Yangjun Ma & Xin Zhao & Jieshan Qiu, 2023. "Energy-saving and product-oriented hydrogen peroxide electrosynthesis enabled by electrochemistry pairing and product engineering," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Shengqin Liu & Yangxin Jin & Shuquan Huang & Qi Zhu & Shan Shao & Jason Chun-Ho Lam, 2024. "One-pot redox cascade paired electrosynthesis of gamma-butyrolactone from furoic acid," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Xiaoyi Jiang & Le Ke & Kai Zhao & Xiaoyu Yan & Hongbo Wang & Xiaojuan Cao & Yuchen Liu & Lingjiao Li & Yifei Sun & Zhiping Wang & Dai Dang & Ning Yan, 2024. "Integrating hydrogen utilization in CO2 electrolysis with reduced energy loss," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Woong Choi & Younghyun Chae & Ershuai Liu & Dongjin Kim & Walter S. Drisdell & Hyung-suk Oh & Jai Hyun Koh & Dong Ki Lee & Ung Lee & Da Hye Won, 2024. "Exploring the influence of cell configurations on Cu catalyst reconstruction during CO2 electroreduction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Pribyl-Kranewitter, B. & Beard, A. & Gîjiu, C.L. & Dinculescu, D. & Schmidt, T.J., 2022. "Influence of low-temperature electrolyser design on economic and environmental potential of CO and HCOOH production: A techno-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    7. Young-Jin Ko & Chulwan Lim & Junyoung Jin & Min Gyu Kim & Ji Yeong Lee & Tae-Yeon Seong & Kwan-Young Lee & Byoung Koun Min & Jae-Young Choi & Taegeun Noh & Gyu Weon Hwang & Woong Hee Lee & Hyung-Suk O, 2024. "Extrinsic hydrophobicity-controlled silver nanoparticles as efficient and stable catalysts for CO2 electrolysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Yuyang Pan & Huiyan Zhang & Bowen Zhang & Feng Gong & Jianyong Feng & Huiting Huang & Srinivas Vanka & Ronglei Fan & Qi Cao & Mingrong Shen & Zhaosheng Li & Zhigang Zou & Rui Xiao & Sheng Chu, 2023. "Renewable formate from sunlight, biomass and carbon dioxide in a photoelectrochemical cell," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Kezia Megagita Gerby Langie & Kyungjae Tak & Changsoo Kim & Hee Won Lee & Kwangho Park & Dongjin Kim & Wonsang Jung & Chan Woo Lee & Hyung-Suk Oh & Dong Ki Lee & Jai Hyun Koh & Byoung Koun Min & Da Hy, 2022. "Toward economical application of carbon capture and utilization technology with near-zero carbon emission," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Fenghui Ye & Shishi Zhang & Qingqing Cheng & Yongde Long & Dong Liu & Rajib Paul & Yunming Fang & Yaqiong Su & Liangti Qu & Liming Dai & Chuangang Hu, 2023. "The role of oxygen-vacancy in bifunctional indium oxyhydroxide catalysts for electrochemical coupling of biomass valorization with CO2 conversion," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Ruiz-López, Estela & Gandara-Loe, Jesús & Baena-Moreno, Francisco & Reina, Tomas Ramirez & Odriozola, José Antonio, 2022. "Electrocatalytic CO2 conversion to C2 products: Catalysts design, market perspectives and techno-economic aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    12. Kannangara, Miyuru & Shadbahr, Jalil & Vasudev, Madhav & Yang, Jianjun & Zhang, Lei & Bensebaa, Farid & Lees, Eric & Simpson, Grace & Berlinguette, Curtis & Cai, Jingjing & Nishikawa, Emily & McCoy, S, 2022. "A standardized methodology for economic and carbon footprint assessment of CO2 to transport fuels: Comparison of novel bicarbonate electrolysis with competing pathways," Applied Energy, Elsevier, vol. 325(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12744-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.