IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v161y2022ics136403212200243x.html
   My bibliography  Save this article

Electrocatalytic CO2 conversion to C2 products: Catalysts design, market perspectives and techno-economic aspects

Author

Listed:
  • Ruiz-López, Estela
  • Gandara-Loe, Jesús
  • Baena-Moreno, Francisco
  • Reina, Tomas Ramirez
  • Odriozola, José Antonio

Abstract

The energy crisis caused by the incessant growth in global energy demand joint to its associated greenhouse emissions motivates the urgent need to control and mitigate atmospheric CO2 levels. Leveraging CO2 as carbon pool to produce value-added products represents a cornerstone of the circular economy. Among the CO2 utilization strategies, electrochemical reduction of CO2 conversion to produce fuels and chemicals is booming due to its versatility and end-product flexibility. Herein most of the studies focused on C1 products although C2 and C2+ compounds are chemically and economically more appealing targets requiring advanced catalytic materials. Still, despite the complex pathways for C2+ products formation, their multiple and assorted applications have motivated the search of suitable electrocatalysts. In this review, we gather and analyse in a comprehensive manner the progress made regarding C2+ products considering not only the catalyst design and the electrochemistry features but also techno-economic aspects in order to envisage the most profitable scenarios. This state-of-the-art analysis showcases that electrochemical reduction of CO2 to C2 products will play a key role in the decarbonisation of the chemical industry paving the way towards a low-carbon future.

Suggested Citation

  • Ruiz-López, Estela & Gandara-Loe, Jesús & Baena-Moreno, Francisco & Reina, Tomas Ramirez & Odriozola, José Antonio, 2022. "Electrocatalytic CO2 conversion to C2 products: Catalysts design, market perspectives and techno-economic aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
  • Handle: RePEc:eee:rensus:v:161:y:2022:i:c:s136403212200243x
    DOI: 10.1016/j.rser.2022.112329
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212200243X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112329?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tamás Mizik & Lajos Nagy & Zoltán Gabnai & Attila Bai, 2020. "The Major Driving Forces of the EU and US Ethanol Markets with Special Attention Paid to the COVID-19 Pandemic," Energies, MDPI, vol. 13(21), pages 1-22, October.
    2. Jun Li & Fanglin Che & Yuanjie Pang & Chengqin Zou & Jane Y. Howe & Thomas Burdyny & Jonathan P. Edwards & Yuhang Wang & Fengwang Li & Ziyun Wang & Phil De Luna & Cao-Thang Dinh & Tao-Tao Zhuang & Mak, 2018. "Copper adparticle enabled selective electrosynthesis of n-propanol," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    3. Sumit Verma & Shawn Lu & Paul J. A. Kenis, 2019. "Co-electrolysis of CO2 and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption," Nature Energy, Nature, vol. 4(6), pages 466-474, June.
    4. Hemma Mistry & Ana Sofia Varela & Cecile S. Bonifacio & Ioannis Zegkinoglou & Ilya Sinev & Yong-Wook Choi & Kim Kisslinger & Eric A. Stach & Judith C. Yang & Peter Strasser & Beatriz Roldan Cuenya, 2016. "Correction: Corrigendum: Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene," Nature Communications, Nature, vol. 7(1), pages 1-1, December.
    5. Fengwang Li & Arnaud Thevenon & Alonso Rosas-Hernández & Ziyun Wang & Yilin Li & Christine M. Gabardo & Adnan Ozden & Cao Thang Dinh & Jun Li & Yuhang Wang & Jonathan P. Edwards & Yi Xu & Christopher , 2020. "Molecular tuning of CO2-to-ethylene conversion," Nature, Nature, vol. 577(7791), pages 509-513, January.
    6. Christina W. Li & Jim Ciston & Matthew W. Kanan, 2014. "Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper," Nature, Nature, vol. 508(7497), pages 504-507, April.
    7. Shota Atsumi & Taizo Hanai & James C. Liao, 2008. "Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels," Nature, Nature, vol. 451(7174), pages 86-89, January.
    8. Jonggeol Na & Bora Seo & Jeongnam Kim & Chan Woo Lee & Hyunjoo Lee & Yun Jeong Hwang & Byoung Koun Min & Dong Ki Lee & Hyung-Suk Oh & Ung Lee, 2019. "General technoeconomic analysis for electrochemical coproduction coupling carbon dioxide reduction with organic oxidation," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    9. Lu, Xu & Leung, Dennis Y.C. & Wang, Huizhi & Maroto-Valer, M. Mercedes & Xuan, Jin, 2016. "A pH-differential dual-electrolyte microfluidic electrochemical cells for CO2 utilization," Renewable Energy, Elsevier, vol. 95(C), pages 277-285.
    10. Chiara Genovese & Manfred E. Schuster & Emma K. Gibson & Diego Gianolio & Victor Posligua & Ricardo Grau-Crespo & Giannantonio Cibin & Peter P. Wells & Debi Garai & Vladyslav Solokha & Sandra Krick Ca, 2018. "Operando spectroscopy study of the carbon dioxide electro-reduction by iron species on nitrogen-doped carbon," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    11. Hemma Mistry & Ana Sofia Varela & Cecile S. Bonifacio & Ioannis Zegkinoglou & Ilya Sinev & Yong-Wook Choi & Kim Kisslinger & Eric A. Stach & Judith C. Yang & Peter Strasser & Beatriz Roldan Cuenya, 2016. "Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene," Nature Communications, Nature, vol. 7(1), pages 1-9, November.
    12. Jiaqi Feng & Hongshuai Gao & Lirong Zheng & Zhipeng Chen & Shaojuan Zeng & Chongyang Jiang & Haifeng Dong & Licheng Liu & Suojiang Zhang & Xiangping Zhang, 2020. "A Mn-N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    13. Yuvraj Y. Birdja & Elena Pérez-Gallent & Marta C. Figueiredo & Adrien J. Göttle & Federico Calle-Vallejo & Marc T. M. Koper, 2019. "Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels," Nature Energy, Nature, vol. 4(9), pages 732-745, September.
    14. Grace, Andrews Nirmala & Choi, Song Yi & Vinoba, Mari & Bhagiyalakshmi, Margandan & Chu, Dae Hyun & Yoon, Yeoil & Nam, Sung Chan & Jeong, Soon Kwan, 2014. "Electrochemical reduction of carbon dioxide at low overpotential on a polyaniline/Cu2O nanocomposite based electrode," Applied Energy, Elsevier, vol. 120(C), pages 85-94.
    15. Qinggong Zhu & Xiaofu Sun & Dexin Yang & Jun Ma & Xinchen Kang & Lirong Zheng & Jing Zhang & Zhonghua Wu & Buxing Han, 2019. "Carbon dioxide electroreduction to C2 products over copper-cuprous oxide derived from electrosynthesized copper complex," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiong Lei & Liang Huang & Jun Yin & Bambar Davaasuren & Youyou Yuan & Xinglong Dong & Zhi-Peng Wu & Xiaoqian Wang & Ke Xin Yao & Xu Lu & Yu Han, 2022. "Structural evolution and strain generation of derived-Cu catalysts during CO2 electroreduction," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Wei Liu & Pengbo Zhai & Aowen Li & Bo Wei & Kunpeng Si & Yi Wei & Xingguo Wang & Guangda Zhu & Qian Chen & Xiaokang Gu & Ruifeng Zhang & Wu Zhou & Yongji Gong, 2022. "Electrochemical CO2 reduction to ethylene by ultrathin CuO nanoplate arrays," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Kaili Yao & Jun Li & Adnan Ozden & Haibin Wang & Ning Sun & Pengyu Liu & Wen Zhong & Wei Zhou & Jieshu Zhou & Xi Wang & Hanqi Liu & Yongchang Liu & Songhua Chen & Yongfeng Hu & Ziyun Wang & David Sint, 2024. "In situ copper faceting enables efficient CO2/CO electrolysis," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Tufa, Ramato Ashu & Chanda, Debabrata & Ma, Ming & Aili, David & Demissie, Taye Beyene & Vaes, Jan & Li, Qingfeng & Liu, Shanhu & Pant, Deepak, 2020. "Towards highly efficient electrochemical CO2 reduction: Cell designs, membranes and electrocatalysts," Applied Energy, Elsevier, vol. 277(C).
    5. Baiyu Yang & Ling Chen & Songlin Xue & Hao Sun & Kun Feng & Yufeng Chen & Xiang Zhang & Long Xiao & Yongze Qin & Jun Zhong & Zhao Deng & Yan Jiao & Yang Peng, 2022. "Electrocatalytic CO2 reduction to alcohols by modulating the molecular geometry and Cu coordination in bicentric copper complexes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Xinyi Ren & Jian Zhao & Xuning Li & Junming Shao & Binbin Pan & Aude Salamé & Etienne Boutin & Thomas Groizard & Shifu Wang & Jie Ding & Xiong Zhang & Wen-Yang Huang & Wen-Jing Zeng & Chengyu Liu & Ya, 2023. "In-situ spectroscopic probe of the intrinsic structure feature of single-atom center in electrochemical CO/CO2 reduction to methanol," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Zhiwen Jiang & Carine Clavaguéra & Changjiang Hu & Sergey A. Denisov & Shuning Shen & Feng Hu & Jun Ma & Mehran Mostafavi, 2023. "Direct time-resolved observation of surface-bound carbon dioxide radical anions on metallic nanocatalysts," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Ke Xie & Adnan Ozden & Rui Kai Miao & Yuhang Li & David Sinton & Edward H. Sargent, 2022. "Eliminating the need for anodic gas separation in CO2 electroreduction systems via liquid-to-liquid anodic upgrading," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Wenpeng Ni & Houjun Chen & Naizhuo Tang & Ting Hu & Wei Zhang & Yan Zhang & Shiguo Zhang, 2024. "High-purity ethylene production via indirect carbon dioxide electrochemical reduction," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Wenzhe Niu & Jie Feng & Junfeng Chen & Lei Deng & Wen Guo & Huajing Li & Liqiang Zhang & Youyong Li & Bo Zhang, 2024. "High-efficiency C3 electrosynthesis on a lattice-strain-stabilized nitrogen-doped Cu surface," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Jun Qi & Yadong Du & Qi Yang & Na Jiang & Jiachun Li & Yi Ma & Yangjun Ma & Xin Zhao & Jieshan Qiu, 2023. "Energy-saving and product-oriented hydrogen peroxide electrosynthesis enabled by electrochemistry pairing and product engineering," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Xiaoxia Chang & Sudarshan Vijay & Yaran Zhao & Nicholas J. Oliveira & Karen Chan & Bingjun Xu, 2022. "Understanding the complementarities of surface-enhanced infrared and Raman spectroscopies in CO adsorption and electrochemical reduction," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Fenghui Ye & Shishi Zhang & Qingqing Cheng & Yongde Long & Dong Liu & Rajib Paul & Yunming Fang & Yaqiong Su & Liangti Qu & Liming Dai & Chuangang Hu, 2023. "The role of oxygen-vacancy in bifunctional indium oxyhydroxide catalysts for electrochemical coupling of biomass valorization with CO2 conversion," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Pribyl-Kranewitter, B. & Beard, A. & Gîjiu, C.L. & Dinculescu, D. & Schmidt, T.J., 2022. "Influence of low-temperature electrolyser design on economic and environmental potential of CO and HCOOH production: A techno-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    15. Yufei Cao & Zhu Chen & Peihao Li & Adnan Ozden & Pengfei Ou & Weiyan Ni & Jehad Abed & Erfan Shirzadi & Jinqiang Zhang & David Sinton & Jun Ge & Edward H. Sargent, 2023. "Surface hydroxide promotes CO2 electrolysis to ethylene in acidic conditions," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    16. Yajun Zheng & Hedan Yao & Ruinan Di & Zhicheng Xiang & Qiang Wang & Fangfang Lu & Yu Li & Guangxing Yang & Qiang Ma & Zhiping Zhang, 2022. "Water coordinated on Cu(I)-based catalysts is the oxygen source in CO2 reduction to CO," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Antonia Herzog & Mauricio Lopez Luna & Hyo Sang Jeon & Clara Rettenmaier & Philipp Grosse & Arno Bergmann & Beatriz Roldan Cuenya, 2024. "Operando Raman spectroscopy uncovers hydroxide and CO species enhance ethanol selectivity during pulsed CO2 electroreduction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Xiaozhi Su & Zhuoli Jiang & Jing Zhou & Hengjie Liu & Danni Zhou & Huishan Shang & Xingming Ni & Zheng Peng & Fan Yang & Wenxing Chen & Zeming Qi & Dingsheng Wang & Yu Wang, 2022. "Complementary Operando Spectroscopy identification of in-situ generated metastable charge-asymmetry Cu2-CuN3 clusters for CO2 reduction to ethanol," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    19. Meng Wang & Bingqing Wang & Jiguang Zhang & Shibo Xi & Ning Ling & Ziyu Mi & Qin Yang & Mingsheng Zhang & Wan Ru Leow & Jia Zhang & Yanwei Lum, 2024. "Acidic media enables oxygen-tolerant electrosynthesis of multicarbon products from simulated flue gas," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Cheng Du & Joel P. Mills & Asfaw G. Yohannes & Wei Wei & Lei Wang & Siyan Lu & Jian-Xiang Lian & Maoyu Wang & Tao Guo & Xiyang Wang & Hua Zhou & Cheng-Jun Sun & John Z. Wen & Brian Kendall & Martin Co, 2023. "Cascade electrocatalysis via AgCu single-atom alloy and Ag nanoparticles in CO2 electroreduction toward multicarbon products," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Keywords

    CO2 reduction; Electrocatalysts; C2 products; Electrochemical reduction; Techno-economic analysis;
    All these keywords.

    JEL classification:

    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:161:y:2022:i:c:s136403212200243x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.