IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms11755.html
   My bibliography  Save this article

Electron–phonon coupling in hybrid lead halide perovskites

Author

Listed:
  • Adam D. Wright

    (Clarendon Laboratory, University of Oxford)

  • Carla Verdi

    (University of Oxford)

  • Rebecca L. Milot

    (Clarendon Laboratory, University of Oxford)

  • Giles E. Eperon

    (Clarendon Laboratory, University of Oxford)

  • Miguel A. Pérez-Osorio

    (University of Oxford)

  • Henry J. Snaith

    (Clarendon Laboratory, University of Oxford)

  • Feliciano Giustino

    (University of Oxford)

  • Michael B. Johnston

    (Clarendon Laboratory, University of Oxford)

  • Laura M. Herz

    (Clarendon Laboratory, University of Oxford)

Abstract

Phonon scattering limits charge-carrier mobilities and governs emission line broadening in hybrid metal halide perovskites. Establishing how charge carriers interact with phonons in these materials is therefore essential for the development of high-efficiency perovskite photovoltaics and low-cost lasers. Here we investigate the temperature dependence of emission line broadening in the four commonly studied formamidinium and methylammonium perovskites, HC(NH2)2PbI3, HC(NH2)2PbBr3, CH3NH3PbI3 and CH3NH3PbBr3, and discover that scattering from longitudinal optical phonons via the Fröhlich interaction is the dominant source of electron–phonon coupling near room temperature, with scattering off acoustic phonons negligible. We determine energies for the interacting longitudinal optical phonon modes to be 11.5 and 15.3 meV, and Fröhlich coupling constants of ∼40 and 60 meV for the lead iodide and bromide perovskites, respectively. Our findings correlate well with first-principles calculations based on many-body perturbation theory, which underlines the suitability of an electronic band-structure picture for describing charge carriers in hybrid perovskites.

Suggested Citation

  • Adam D. Wright & Carla Verdi & Rebecca L. Milot & Giles E. Eperon & Miguel A. Pérez-Osorio & Henry J. Snaith & Feliciano Giustino & Michael B. Johnston & Laura M. Herz, 2016. "Electron–phonon coupling in hybrid lead halide perovskites," Nature Communications, Nature, vol. 7(1), pages 1-9, September.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11755
    DOI: 10.1038/ncomms11755
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms11755
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms11755?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuan Trung Nguyen & Katrin Winte & Daniel Timmer & Yevgeny Rakita & Davide Raffaele Ceratti & Sigalit Aharon & Muhammad Sufyan Ramzan & Caterina Cocchi & Michael Lorke & Frank Jahnke & David Cahen & C, 2023. "Phonon-driven intra-exciton Rabi oscillations in CsPbBr3 halide perovskites," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Feng Ke & Jiejuan Yan & Shanyuan Niu & Jiajia Wen & Ketao Yin & Hong Yang & Nathan R. Wolf & Yan-Kai Tzeng & Hemamala I. Karunadasa & Young S. Lee & Wendy L. Mao & Yu Lin, 2022. "Cesium-mediated electron redistribution and electron-electron interaction in high-pressure metallic CsPbI3," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Xudong Xiao & Kyaw Zin Latt & Jue Gong & Taewoo Kim & Justin G. Connell & Yuzi Liu & H. Christopher Fry & John E. Pearson & Owen S. Wostoupal & Mengyuan Li & Calvin Soldan & Zhenzhen Yang & Richard D., 2024. "Light-induced Kondo-like exciton-spin interaction in neodymium(II) doped hybrid perovskite," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Sean A. Bourelle & Franco V. A. Camargo & Soumen Ghosh & Timo Neumann & Tim W. J. Goor & Ravichandran Shivanna & Thomas Winkler & Giulio Cerullo & Felix Deschler, 2022. "Optical control of exciton spin dynamics in layered metal halide perovskites via polaronic state formation," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Claudiu M. Iaru & Annalisa Brodu & Niels J. J. Hoof & Stan E. T. Huurne & Jonathan Buhot & Federico Montanarella & Sophia Buhbut & Peter C. M. Christianen & Daniël Vanmaekelbergh & Celso Mello Donega , 2021. "Fröhlich interaction dominated by a single phonon mode in CsPbBr3," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    6. Shuo Wang & Qian Zhao & Abhijit Hazarika & Simiao Li & Yue Wu & Yaxin Zhai & Xihan Chen & Joseph M. Luther & Guoran Li, 2023. "Thermal tolerance of perovskite quantum dots dependent on A-site cation and surface ligand," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Paribesh Acharyya & Tanmoy Ghosh & Koushik Pal & Kewal Singh Rana & Moinak Dutta & Diptikanta Swain & Martin Etter & Ajay Soni & Umesh V. Waghmare & Kanishka Biswas, 2022. "Glassy thermal conductivity in Cs3Bi2I6Cl3 single crystal," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Hongzhi Zhou & Qingjie Feng & Cheng Sun & Yahui Li & Weijian Tao & Wei Tang & Linjun Li & Enzheng Shi & Guangjun Nan & Haiming Zhu, 2024. "Robust excitonic light emission in 2D tin halide perovskites by weak excited state polaronic effect," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Ahmad R. Kirmani & Todd A. Byers & Zhenyi Ni & Kaitlyn VanSant & Darshpreet K. Saini & Rebecca Scheidt & Xiaopeng Zheng & Tatchen Buh Kum & Ian R. Sellers & Lyndsey McMillon-Brown & Jinsong Huang & Bi, 2024. "Unraveling radiation damage and healing mechanisms in halide perovskites using energy-tuned dual irradiation dosing," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.