IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-04946-7.html
   My bibliography  Save this article

Excited-state vibrational dynamics toward the polaron in methylammonium lead iodide perovskite

Author

Listed:
  • Myeongkee Park

    (University of California
    Dong-A University)

  • Amanda J. Neukirch

    (Los Alamos National Laboratory)

  • Sebastian E. Reyes-Lillo

    (Universidad Andres Bello
    University of California
    Lawrence Berkeley National Laboratory)

  • Minliang Lai

    (University of California)

  • Scott R. Ellis

    (University of California)

  • Daniel Dietze

    (Osram Opto Semiconductors GmbH)

  • Jeffrey B. Neaton

    (University of California
    Lawrence Berkeley National Laboratory
    Kavli Energy NanoSciences Institute at Berkeley)

  • Peidong Yang

    (University of California
    Kavli Energy NanoSciences Institute at Berkeley
    University of California
    Lawrence Berkeley National Laboratory)

  • Sergei Tretiak

    (Los Alamos National Laboratory)

  • Richard A. Mathies

    (University of California)

Abstract

Hybrid organic–inorganic perovskites have attractive optoelectronic properties including exceptional solar cell performance. The improved properties of perovskites have been attributed to polaronic effects involving stabilization of localized charge character by structural deformations and polarizations. Here we examine the Pb–I structural dynamics leading to polaron formation in methylammonium lead iodide perovskite by transient absorption, time-domain Raman spectroscopy, and density functional theory. Methylammonium lead iodide perovskite exhibits excited-state coherent nuclear wave packets oscillating at ~20, ~43, and ~75 cm−1 which involve skeletal bending, in-plane bending, and c-axis stretching of the I–Pb–I bonds, respectively. The amplitudes of these wave packet motions report on the magnitude of the excited-state structural changes, in particular, the formation of a bent and elongated octahedral PbI64− geometry. We have predicted the excited-state geometry and structural changes between the neutral and polaron states using a normal-mode projection method, which supports and rationalizes the experimental results. This study reveals the polaron formation via nuclear dynamics that may be important for efficient charge separation.

Suggested Citation

  • Myeongkee Park & Amanda J. Neukirch & Sebastian E. Reyes-Lillo & Minliang Lai & Scott R. Ellis & Daniel Dietze & Jeffrey B. Neaton & Peidong Yang & Sergei Tretiak & Richard A. Mathies, 2018. "Excited-state vibrational dynamics toward the polaron in methylammonium lead iodide perovskite," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04946-7
    DOI: 10.1038/s41467-018-04946-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-04946-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-04946-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuan Trung Nguyen & Katrin Winte & Daniel Timmer & Yevgeny Rakita & Davide Raffaele Ceratti & Sigalit Aharon & Muhammad Sufyan Ramzan & Caterina Cocchi & Michael Lorke & Frank Jahnke & David Cahen & C, 2023. "Phonon-driven intra-exciton Rabi oscillations in CsPbBr3 halide perovskites," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Claudiu M. Iaru & Annalisa Brodu & Niels J. J. Hoof & Stan E. T. Huurne & Jonathan Buhot & Federico Montanarella & Sophia Buhbut & Peter C. M. Christianen & Daniël Vanmaekelbergh & Celso Mello Donega , 2021. "Fröhlich interaction dominated by a single phonon mode in CsPbBr3," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    3. Xingyu Yue & Chunwei Wang & Bo Zhang & Zeyu Zhang & Zhuang Xiong & Xinzhi Zu & Zhengzheng Liu & Zhiping Hu & George Omololu Odunmbaku & Yujie Zheng & Kuan Sun & Juan Du, 2023. "Real-time observation of the buildup of polaron in α-FAPbI3," Nature Communications, Nature, vol. 14(1), pages 1-6, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04946-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.