IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29514-y.html
   My bibliography  Save this article

Lupus enhancer risk variant causes dysregulation of IRF8 through cooperative lncRNA and DNA methylation machinery

Author

Listed:
  • Tian Zhou

    (Shanghai Jiao Tong University School of Medicine (SJTUSM)
    Shanghai Jiao Tong University School of Medicine (SJTUSM)
    Shenzhen Futian Hospital for Rheumatic Diseases)

  • Xinyi Zhu

    (Shanghai Jiao Tong University School of Medicine (SJTUSM))

  • Zhizhong Ye

    (Shenzhen Futian Hospital for Rheumatic Diseases)

  • Yong-Fei Wang

    (The University of Hong Kong)

  • Chao Yao

    (Chinese Academy of Sciences (CAS))

  • Ning Xu

    (Shanghai Jiao Tong University School of Medicine (SJTUSM))

  • Mi Zhou

    (Shanghai Jiao Tong University (SJTU))

  • Jianyang Ma

    (Shanghai Jiao Tong University School of Medicine (SJTUSM))

  • Yuting Qin

    (Shanghai Jiao Tong University School of Medicine (SJTUSM))

  • Yiwei Shen

    (Shanghai Jiao Tong University School of Medicine (SJTUSM))

  • Yuanjia Tang

    (Shanghai Jiao Tong University School of Medicine (SJTUSM))

  • Zhihua Yin

    (Shenzhen Futian Hospital for Rheumatic Diseases)

  • Hong Xu

    (Shanghai Jiao Tong University School of Medicine (SJTUSM)
    Shanghai Jiao Tong University School of Medicine (SJTUSM))

  • Yutong Zhang

    (Shanghai Jiao Tong University School of Medicine (SJTUSM))

  • Xiaoli Zang

    (Shanghai Jiao Tong University School of Medicine (SJTUSM))

  • Huihua Ding

    (Shanghai Jiao Tong University School of Medicine (SJTUSM))

  • Wanling Yang

    (The University of Hong Kong)

  • Ya Guo

    (Shanghai Jiao Tong University (SJTU))

  • John B. Harley

    (US Department of Veterans Affairs Medical Center)

  • Bahram Namjou

    (Cincinnati Children’s Hospital Medical Center)

  • Kenneth M. Kaufman

    (Cincinnati Children’s Hospital Medical Center
    Cincinnati Children’s Hospital Medical Center
    University of Cincinnati College of Medicine)

  • Leah C. Kottyan

    (Cincinnati Children’s Hospital Medical Center
    University of Cincinnati College of Medicine
    Cincinnati Children’s Hospital Medical Center)

  • Matthew T. Weirauch

    (Cincinnati Children’s Hospital Medical Center
    University of Cincinnati College of Medicine
    Cincinnati Children’s Hospital Medical Center
    Cincinnati Children’s Hospital Medical Center)

  • Guojun Hou

    (Shanghai Jiao Tong University School of Medicine (SJTUSM)
    Shanghai Jiao Tong University School of Medicine (SJTUSM)
    Shenzhen Futian Hospital for Rheumatic Diseases)

  • Nan Shen

    (Shanghai Jiao Tong University School of Medicine (SJTUSM)
    Shanghai Jiao Tong University School of Medicine (SJTUSM)
    Shenzhen Futian Hospital for Rheumatic Diseases
    Cincinnati Children’s Hospital Medical Center)

Abstract

Despite strong evidence that human genetic variants affect the expression of many key transcription factors involved in autoimmune diseases, establishing biological links between non-coding risk variants and the gene targets they regulate remains a considerable challenge. Here, we combine genetic, epigenomic, and CRISPR activation approaches to screen for functional variants that regulate IRF8 expression. We demonstrate that the locus containing rs2280381 is a cell-type-specific enhancer for IRF8 that spatially interacts with the IRF8 promoter. Further, rs2280381 mediates IRF8 expression through enhancer RNA AC092723.1, which recruits TET1 to the IRF8 promoter regulating IRF8 expression by affecting methylation levels. The alleles of rs2280381 modulate PU.1 binding and chromatin state to regulate AC092723.1 and IRF8 expression differentially. Our work illustrates an integrative strategy to define functional genetic variants that regulate the expression of critical genes in autoimmune diseases and decipher the mechanisms underlying the dysregulation of IRF8 expression mediated by lupus risk variants.

Suggested Citation

  • Tian Zhou & Xinyi Zhu & Zhizhong Ye & Yong-Fei Wang & Chao Yao & Ning Xu & Mi Zhou & Jianyang Ma & Yuting Qin & Yiwei Shen & Yuanjia Tang & Zhihua Yin & Hong Xu & Yutong Zhang & Xiaoli Zang & Huihua D, 2022. "Lupus enhancer risk variant causes dysregulation of IRF8 through cooperative lncRNA and DNA methylation machinery," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29514-y
    DOI: 10.1038/s41467-022-29514-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29514-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29514-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Charles C. Bell & Katie A. Fennell & Yih-Chih Chan & Florian Rambow & Miriam M. Yeung & Dane Vassiliadis & Luis Lara & Paul Yeh & Luciano G. Martelotto & Aljosja Rogiers & Brandon E. Kremer & Olena Ba, 2019. "Targeting enhancer switching overcomes non-genetic drug resistance in acute myeloid leukaemia," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    2. Deborah S Cunninghame Graham & David L Morris & Tushar R Bhangale & Lindsey A Criswell & Ann-Christine Syvänen & Lars Rönnblom & Timothy W Behrens & Robert R Graham & Timothy J Vyse, 2011. "Association of NCF2, IKZF1, IRF8, IFIH1, and TYK2 with Systemic Lupus Erythematosus," PLOS Genetics, Public Library of Science, vol. 7(10), pages 1-9, October.
    3. Xiaoming Lu & Xiaoting Chen & Carmy Forney & Omer Donmez & Daniel Miller & Sreeja Parameswaran & Ted Hong & Yongbo Huang & Mario Pujato & Tareian Cazares & Emily R. Miraldi & John P. Ray & Carl G. Boe, 2021. "Global discovery of lupus genetic risk variant allelic enhancer activity," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    4. Silvana Konermann & Mark D. Brigham & Alexandro E. Trevino & Julia Joung & Omar O. Abudayyeh & Clea Barcena & Patrick D. Hsu & Naomi Habib & Jonathan S. Gootenberg & Hiroshi Nishimasu & Osamu Nureki &, 2015. "Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex," Nature, Nature, vol. 517(7536), pages 583-588, January.
    5. Dimitre R. Simeonov & Benjamin G. Gowen & Mandy Boontanrart & Theodore L. Roth & John D. Gagnon & Maxwell R. Mumbach & Ansuman T. Satpathy & Youjin Lee & Nicolas L. Bray & Alice Y. Chan & Dmytro S. Li, 2017. "Discovery of stimulation-responsive immune enhancers with CRISPR activation," Nature, Nature, vol. 549(7670), pages 111-115, September.
    6. Sergey Abramov & Alexandr Boytsov & Daria Bykova & Dmitry D. Penzar & Ivan Yevshin & Semyon K. Kolmykov & Marina V. Fridman & Alexander V. Favorov & Ilya E. Vorontsov & Eugene Baulin & Fedor Kolpakov , 2021. "Landscape of allele-specific transcription factor binding in the human genome," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    7. Joseph Nasser & Drew T. Bergman & Charles P. Fulco & Philine Guckelberger & Benjamin R. Doughty & Tejal A. Patwardhan & Thouis R. Jones & Tung H. Nguyen & Jacob C. Ulirsch & Fritz Lekschas & Kristy Mu, 2021. "Genome-wide enhancer maps link risk variants to disease genes," Nature, Nature, vol. 593(7858), pages 238-243, May.
    8. Yong-Fei Wang & Yan Zhang & Zhiming Lin & Huoru Zhang & Ting-You Wang & Yujie Cao & David L. Morris & Yujun Sheng & Xianyong Yin & Shi-Long Zhong & Xiaoqiong Gu & Yao Lei & Jing He & Qi Wu & Jiangshan, 2021. "Identification of 38 novel loci for systemic lupus erythematosus and genetic heterogeneity between ancestral groups," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    9. Olga Gorlova & Jose-Ezequiel Martin & Blanca Rueda & Bobby P C Koeleman & Jun Ying & Maria Teruel & Lina-Marcela Diaz-Gallo & Jasper C Broen & Madelon C Vonk & Carmen P Simeon & Behrooz Z Alizadeh & M, 2011. "Identification of Novel Genetic Markers Associated with Clinical Phenotypes of Systemic Sclerosis through a Genome-Wide Association Strategy," PLOS Genetics, Public Library of Science, vol. 7(7), pages 1-11, July.
    10. Andrew V. Anzalone & Peyton B. Randolph & Jessie R. Davis & Alexander A. Sousa & Luke W. Koblan & Jonathan M. Levy & Peter J. Chen & Christopher Wilson & Gregory A. Newby & Aditya Raguram & David R. L, 2019. "Search-and-replace genome editing without double-strand breaks or donor DNA," Nature, Nature, vol. 576(7785), pages 149-157, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiang Wang & Taehyeung Kim & Marta Martínez-Bonet & Vitor R. C. Aguiar & Sangwan Sim & Jing Cui & Jeffrey A. Sparks & Xiaoting Chen & Marc Todd & Brian Wauford & Miranda C. Marion & Carl D. Langefeld , 2024. "High-throughput identification of functional regulatory SNPs in systemic lupus erythematosus," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Xiangfeng Kong & Hainan Zhang & Guoling Li & Zikang Wang & Xuqiang Kong & Lecong Wang & Mingxing Xue & Weihong Zhang & Yao Wang & Jiajia Lin & Jingxing Zhou & Xiaowen Shen & Yinghui Wei & Na Zhong & W, 2023. "Engineered CRISPR-OsCas12f1 and RhCas12f1 with robust activities and expanded target range for genome editing," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Yuki Ishikawa & Nao Tanaka & Yoshihide Asano & Masanari Kodera & Yuichiro Shirai & Mitsuteru Akahoshi & Minoru Hasegawa & Takashi Matsushita & Kazuyoshi Saito & Sei-ichiro Motegi & Hajime Yoshifuji & , 2024. "GWAS for systemic sclerosis identifies six novel susceptibility loci including one in the Fcγ receptor region," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Chachrit Khunsriraksakul & Qinmengge Li & Havell Markus & Matthew T. Patrick & Renan Sauteraud & Daniel McGuire & Xingyan Wang & Chen Wang & Lida Wang & Siyuan Chen & Ganesh Shenoy & Bingshan Li & Xue, 2023. "Multi-ancestry and multi-trait genome-wide association meta-analyses inform clinical risk prediction for systemic lupus erythematosus," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Lisa Maria Riedmayr & Klara Sonnie Hinrichsmeyer & Stefan Bernhard Thalhammer & David Manuel Mittas & Nina Karguth & Dina Yehia Otify & Sybille Böhm & Valentin Johannes Weber & Michael David Bartosche, 2023. "mRNA trans-splicing dual AAV vectors for (epi)genome editing and gene therapy," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Raed Ibraheim & Phillip W. L. Tai & Aamir Mir & Nida Javeed & Jiaming Wang & Tomás C. Rodríguez & Suk Namkung & Samantha Nelson & Eraj Shafiq Khokhar & Esther Mintzer & Stacy Maitland & Zexiang Chen &, 2021. "Self-inactivating, all-in-one AAV vectors for precision Cas9 genome editing via homology-directed repair in vivo," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    7. Samuel S. Kim & Buu Truong & Karthik Jagadeesh & Kushal K. Dey & Amber Z. Shen & Soumya Raychaudhuri & Manolis Kellis & Alkes L. Price, 2024. "Leveraging single-cell ATAC-seq and RNA-seq to identify disease-critical fetal and adult brain cell types," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Ronghao Chen & Yu Cao & Yajing Liu & Dongdong Zhao & Ju Li & Zhihui Cheng & Changhao Bi & Xueli Zhang, 2023. "Enhancement of a prime editing system via optimal recruitment of the pioneer transcription factor P65," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Heathcliff Dorado García & Fabian Pusch & Yi Bei & Jennifer Stebut & Glorymar Ibáñez & Kristina Guillan & Koshi Imami & Dennis Gürgen & Jana Rolff & Konstantin Helmsauer & Stephanie Meyer-Liesener & N, 2022. "Therapeutic targeting of ATR in alveolar rhabdomyosarcoma," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Xiangyang Li & Guiquan Zhang & Shisheng Huang & Yao Liu & Jin Tang & Mingtian Zhong & Xin Wang & Wenjun Sun & Yuan Yao & Quanjiang Ji & Xiaolong Wang & Jianghuai Liu & Shiqiang Zhu & Xingxu Huang, 2023. "Development of a versatile nuclease prime editor with upgraded precision," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Chih-Hao Wang & Tadataka Tsuji & Li-Hong Wu & Cheng-Ying Yang & Tian Lian Huang & Mari Sato & Farnaz Shamsi & Yu-Hua Tseng, 2024. "Endothelin 3/EDNRB signaling induces thermogenic differentiation of white adipose tissue," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    12. Zhaohui Zhong & Guanqing Liu & Zhongjie Tang & Shuyue Xiang & Liang Yang & Lan Huang & Yao He & Tingting Fan & Shishi Liu & Xuelian Zheng & Tao Zhang & Yiping Qi & Jian Huang & Yong Zhang, 2023. "Efficient plant genome engineering using a probiotic sourced CRISPR-Cas9 system," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    13. Tiantian Jing & Dianhui Wei & Xiaoli Xu & Chengsi Wu & Lili Yuan & Yiwen Huang & Yizhen Liu & Yanyi Jiang & Boshi Wang, 2024. "Transposable elements-mediated recruitment of KDM1A epigenetically silences HNF4A expression to promote hepatocellular carcinoma," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    14. You Li & Zhiqiang Li & Ruiling Chen & Min Lian & Hanxiao Wang & Yiran Wei & Zhengrui You & Jun Zhang & Bo Li & Yikang Li & Bingyuan Huang & Yong Chen & Qiaoyan Liu & Zhuwan Lyu & Xueying Liang & Qi Mi, 2023. "A regulatory variant at 19p13.3 is associated with primary biliary cholangitis risk and ARID3A expression," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    15. Jian Wang & Yuxi Teng & Ruihua Zhang & Yifei Wu & Lei Lou & Yusong Zou & Michelle Li & Zhong-Ru Xie & Yajun Yan, 2021. "Engineering a PAM-flexible SpdCas9 variant as a universal gene repressor," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    16. You-Jeong Kim & Dayoung Yun & Jungjoon K. Lee & Cheulhee Jung & Aram J. Chung, 2024. "Highly efficient CRISPR-mediated genome editing through microfluidic droplet cell mechanoporation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Tiago C. Silva & Juan I. Young & Lanyu Zhang & Lissette Gomez & Michael A. Schmidt & Achintya Varma & X. Steven Chen & Eden R. Martin & Lily Wang, 2022. "Cross-tissue analysis of blood and brain epigenome-wide association studies in Alzheimer’s disease," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    18. Boris Kantor & Bernadette O’Donovan & Joseph Rittiner & Dellila Hodgson & Nicholas Lindner & Sophia Guerrero & Wendy Dong & Austin Zhang & Ornit Chiba-Falek, 2024. "The therapeutic implications of all-in-one AAV-delivered epigenome-editing platform in neurodegenerative disorders," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    19. Yi-Li Feng & Qian Liu & Ruo-Dan Chen & Si-Cheng Liu & Zhi-Cheng Huang & Kun-Ming Liu & Xiao-Ying Yang & An-Yong Xie, 2022. "DNA nicks induce mutational signatures associated with BRCA1 deficiency," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    20. Guanghao Qi & Surya B. Chhetri & Debashree Ray & Diptavo Dutta & Alexis Battle & Samsiddhi Bhattacharjee & Nilanjan Chatterjee, 2024. "Genome-wide large-scale multi-trait analysis characterizes global patterns of pleiotropy and unique trait-specific variants," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29514-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.