IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36093-z.html
   My bibliography  Save this article

Synchronized activity of sensory neurons initiates cortical synchrony in a model of neuropathic pain

Author

Listed:
  • Chao Chen

    (Peking 301 Hospital
    First Affiliated Hospital of Southern University of Science and Technology)

  • Linlin Sun

    (Columbia University Medical Center
    Peking University)

  • Avital Adler

    (New York University School of Medicine)

  • Hang Zhou

    (Columbia University Medical Center)

  • Licheng Zhang

    (Peking 301 Hospital)

  • Lihai Zhang

    (Peking 301 Hospital)

  • Junhao Deng

    (Peking 301 Hospital)

  • Yang Bai

    (Shenzhen Bay Laboratory)

  • Jinhui Zhang

    (the Affiliated Southeast Hospital of Xiamen University)

  • Guang Yang

    (Columbia University Medical Center)

  • Wen-Biao Gan

    (Shenzhen Bay Laboratory)

  • Peifu Tang

    (Peking 301 Hospital)

Abstract

Increased low frequency cortical oscillations are observed in people with neuropathic pain, but the cause of such elevated cortical oscillations and their impact on pain development remain unclear. By imaging neuronal activity in a spared nerve injury (SNI) mouse model of neuropathic pain, we show that neurons in dorsal root ganglia (DRG) and somatosensory cortex (S1) exhibit synchronized activity after peripheral nerve injury. Notably, synchronized activity of DRG neurons occurs within hours after injury and 1-2 days before increased cortical oscillations. This DRG synchrony is initiated by axotomized neurons and mediated by local purinergic signaling at the site of nerve injury. We further show that synchronized DRG activity after SNI is responsible for increasing low frequency cortical oscillations and synaptic remodeling in S1, as well as for inducing animals’ pain-like behaviors. In naive mice, enhancing the synchrony, not the level, of DRG neuronal activity causes synaptic changes in S1 and pain-like behaviors similar to SNI mice. Taken together, these results reveal the critical role of synchronized DRG neuronal activity in increasing cortical plasticity and oscillations in a neuropathic pain model. These findings also suggest the potential importance of detection and suppression of elevated cortical oscillations in neuropathic pain states.

Suggested Citation

  • Chao Chen & Linlin Sun & Avital Adler & Hang Zhou & Licheng Zhang & Lihai Zhang & Junhao Deng & Yang Bai & Jinhui Zhang & Guang Yang & Wen-Biao Gan & Peifu Tang, 2023. "Synchronized activity of sensory neurons initiates cortical synchrony in a model of neuropathic pain," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36093-z
    DOI: 10.1038/s41467-023-36093-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36093-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36093-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Guang Yang & Feng Pan & Wen-Biao Gan, 2009. "Stably maintained dendritic spines are associated with lifelong memories," Nature, Nature, vol. 462(7275), pages 920-924, December.
    2. Linette Liqi Tan & Manfred Josef Oswald & Céline Heinl & Oscar Andrés Retana Romero & Sanjeev Kumar Kaushalya & Hannah Monyer & Rohini Kuner, 2019. "Gamma oscillations in somatosensory cortex recruit prefrontal and descending serotonergic pathways in aversion and nociception," Nature Communications, Nature, vol. 10(1), pages 1-17, December.
    3. Chao Chen & Jinhui Zhang & Linlin Sun & Yiling Zhang & Wen-Biao Gan & Peifu Tang & Guang Yang, 2019. "Long-term imaging of dorsal root ganglia in awake behaving mice," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    4. Nicolas X. Tritsch & Eunyoung Yi & Jonathan E. Gale & Elisabeth Glowatzki & Dwight E. Bergles, 2007. "The origin of spontaneous activity in the developing auditory system," Nature, Nature, vol. 450(7166), pages 50-55, November.
    5. Yuanyuan Liu & Alban Latremoliere & Xinjian Li & Zicong Zhang & Mengying Chen & Xuhua Wang & Chao Fang & Junjie Zhu & Chloe Alexandre & Zhongyang Gao & Bo Chen & Xin Ding & Jin-Yong Zhou & Yiming Zhan, 2018. "Touch and tactile neuropathic pain sensitivity are set by corticospinal projections," Nature, Nature, vol. 561(7724), pages 547-550, September.
    6. Rahul Dhandapani & Cynthia Mary Arokiaraj & Francisco J. Taberner & Paola Pacifico & Sruthi Raja & Linda Nocchi & Carla Portulano & Federica Franciosa & Mariano Maffei & Ahmad Fawzi Hussain & Fernanda, 2018. "Control of mechanical pain hypersensitivity in mice through ligand-targeted photoablation of TrkB-positive sensory neurons," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    7. Ho Ko & Lee Cossell & Chiara Baragli & Jan Antolik & Claudia Clopath & Sonja B. Hofer & Thomas D. Mrsic-Flogel, 2013. "The emergence of functional microcircuits in visual cortex," Nature, Nature, vol. 496(7443), pages 96-100, April.
    8. James B. Ackman & Timothy J. Burbridge & Michael C. Crair, 2012. "Retinal waves coordinate patterned activity throughout the developing visual system," Nature, Nature, vol. 490(7419), pages 219-225, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mayank Gautam & Akihiro Yamada & Ayaka I. Yamada & Qinxue Wu & Kim Kridsada & Jennifer Ling & Huasheng Yu & Peter Dong & Minghong Ma & Jianguo Gu & Wenqin Luo, 2024. "Distinct local and global functions of mouse Aβ low-threshold mechanoreceptors in mechanical nociception," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    2. Daniel G. Taub & Qiufen Jiang & Francesca Pietrafesa & Junfeng Su & Aloe Carroll & Caitlin Greene & Michael R. Blanchard & Aakanksha Jain & Mahmoud El-Rifai & Alexis Callen & Katherine Yager & Clara C, 2024. "The secondary somatosensory cortex gates mechanical and heat sensitivity," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Hironobu Osaki & Moeko Kanaya & Yoshifumi Ueta & Mariko Miyata, 2022. "Distinct nociception processing in the dysgranular and barrel regions of the mouse somatosensory cortex," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Brian B. Jeon & Thomas Fuchs & Steven M. Chase & Sandra J. Kuhlman, 2022. "Existing function in primary visual cortex is not perturbed by new skill acquisition of a non-matched sensory task," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Yoav Printz & Pritish Patil & Mathias Mahn & Asaf Benjamin & Anna Litvin & Rivka Levy & Max Bringmann & Ofer Yizhar, 2023. "Determinants of functional synaptic connectivity among amygdala-projecting prefrontal cortical neurons in male mice," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Dominic J. Vita & Fernanda S. Orsi & Nathan G. Stanko & Natalie A. Clark & Alexandre Tiriac, 2024. "Development and organization of the retinal orientation selectivity map," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Zhiwei Xu & Erez Geron & Luis M. Pérez-Cuesta & Yang Bai & Wen-Biao Gan, 2023. "Generalized extinction of fear memory depends on co-allocation of synaptic plasticity in dendrites," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Francesco Paolo Ulloa Severino & Oluwadamilola O. Lawal & Kristina Sakers & Shiyi Wang & Namsoo Kim & Alexander David Friedman & Sarah Anne Johnson & Chaichontat Sriworarat & Ryan H. Hughes & Scott H., 2023. "Training-induced circuit-specific excitatory synaptogenesis in mice is required for effort control," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    9. Mikael Lundqvist & Scott L. Brincat & Jonas Rose & Melissa R. Warden & Timothy J. Buschman & Earl K. Miller & Pawel Herman, 2023. "Working memory control dynamics follow principles of spatial computing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Cecilia L Friedrichs-Maeder & Alessandra Griffa & Juliane Schneider & Petra Susan Hüppi & Anita Truttmann & Patric Hagmann, 2017. "Exploring the role of white matter connectivity in cortex maturation," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-18, May.
    11. Ayush Mandwal & Javier G Orlandi & Christoph Simon & Jörn Davidsen, 2021. "A biochemical mechanism for time-encoding memory formation within individual synapses of Purkinje cells," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-34, May.
    12. Michael Fauth & Florentin Wörgötter & Christian Tetzlaff, 2015. "The Formation of Multi-synaptic Connections by the Interaction of Synaptic and Structural Plasticity and Their Functional Consequences," PLOS Computational Biology, Public Library of Science, vol. 11(1), pages 1-29, January.
    13. Gabriel Koch Ocker & Ashok Litwin-Kumar & Brent Doiron, 2015. "Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-40, August.
    14. Julia Ast & Daniela Nasteska & Nicholas H. F. Fine & Daniel J. Nieves & Zsombor Koszegi & Yann Lanoiselée & Federica Cuozzo & Katrina Viloria & Andrea Bacon & Nguyet T. Luu & Philip N. Newsome & David, 2023. "Revealing the tissue-level complexity of endogenous glucagon-like peptide-1 receptor expression and signaling," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    15. Suchin S Gururangan & Alexander J Sadovsky & Jason N MacLean, 2014. "Analysis of Graph Invariants in Functional Neocortical Circuitry Reveals Generalized Features Common to Three Areas of Sensory Cortex," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-12, July.
    16. Saeka Tomatsu & GeeHee Kim & Shinji Kubota & Kazuhiko Seki, 2023. "Presynaptic gating of monkey proprioceptive signals for proper motor action," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    17. Barbara Trattner & Céline Marie Gravot & Benedikt Grothe & Lars Kunz, 2013. "Metabolic Maturation of Auditory Neurones in the Superior Olivary Complex," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-14, June.
    18. Yajie Liang & Rongwen Lu & Katharine Borges & Na Ji, 2023. "Stimulus edges induce orientation tuning in superior colliculus," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Dimitri Yatsenko & Krešimir Josić & Alexander S Ecker & Emmanouil Froudarakis & R James Cotton & Andreas S Tolias, 2015. "Improved Estimation and Interpretation of Correlations in Neural Circuits," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-28, March.
    20. Christopher M. Kim & Arseny Finkelstein & Carson C. Chow & Karel Svoboda & Ran Darshan, 2023. "Distributing task-related neural activity across a cortical network through task-independent connections," Nature Communications, Nature, vol. 14(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36093-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.