IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31493-z.html
   My bibliography  Save this article

Voltage-driven gigahertz frequency tuning of spin Hall nano-oscillators

Author

Listed:
  • Jong-Guk Choi

    (KAIST)

  • Jaehyeon Park

    (KAIST)

  • Min-Gu Kang

    (KAIST)

  • Doyoon Kim

    (Korea University)

  • Jae-Sung Rieh

    (Korea University)

  • Kyung-Jin Lee

    (KAIST)

  • Kab-Jin Kim

    (KAIST)

  • Byong-Guk Park

    (KAIST)

Abstract

Spin Hall nano-oscillators (SHNOs) exploiting current-driven magnetization auto-oscillation have recently received much attention because of their potential for neuromorphic computing. Widespread applications of neuromorphic devices with SHNOs require an energy-efficient method of tuning oscillation frequency over broad ranges and storing trained frequencies in SHNOs without the need for additional memory circuitry. While the voltage-driven frequency tuning of SHNOs has been demonstrated, it was volatile and limited to megahertz ranges. Here, we show that the frequency of SHNOs is controlled up to 2.1 GHz by an electric field of 1.25 MV/cm. The large frequency tuning is attributed to the voltage-controlled magnetic anisotropy (VCMA) in a perpendicularly magnetized Ta/Pt/[Co/Ni]n/Co/AlOx structure. Moreover, the non-volatile VCMA effect enables cumulative control of the frequency using repetitive voltage pulses which mimic the potentiation and depression functions of biological synapses. Our results suggest that the voltage-driven frequency tuning of SHNOs facilitates the development of energy-efficient neuromorphic devices.

Suggested Citation

  • Jong-Guk Choi & Jaehyeon Park & Min-Gu Kang & Doyoon Kim & Jae-Sung Rieh & Kyung-Jin Lee & Kab-Jin Kim & Byong-Guk Park, 2022. "Voltage-driven gigahertz frequency tuning of spin Hall nano-oscillators," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31493-z
    DOI: 10.1038/s41467-022-31493-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31493-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31493-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Himanshu Fulara & Mohammad Zahedinejad & Roman Khymyn & Mykola Dvornik & Shunsuke Fukami & Shun Kanai & Hideo Ohno & Johan Åkerman, 2020. "Giant voltage-controlled modulation of spin Hall nano-oscillator damping," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    2. Zheng Duan & Andrew Smith & Liu Yang & Brian Youngblood & Jürgen Lindner & Vladislav E. Demidov & Sergej O. Demokritov & Ilya N. Krivorotov, 2014. "Nanowire spin torque oscillator driven by spin orbit torques," Nature Communications, Nature, vol. 5(1), pages 1-7, December.
    3. Jacob Torrejon & Mathieu Riou & Flavio Abreu Araujo & Sumito Tsunegi & Guru Khalsa & Damien Querlioz & Paolo Bortolotti & Vincent Cros & Kay Yakushiji & Akio Fukushima & Hitoshi Kubota & Shinji Yuasa , 2017. "Neuromorphic computing with nanoscale spintronic oscillators," Nature, Nature, vol. 547(7664), pages 428-431, July.
    4. H. Ohno & D. Chiba & F. Matsukura & T. Omiya & E. Abe & T. Dietl & Y. Ohno & K. Ohtani, 2000. "Electric-field control of ferromagnetism," Nature, Nature, vol. 408(6815), pages 944-946, December.
    5. Miguel Romera & Philippe Talatchian & Sumito Tsunegi & Flavio Abreu Araujo & Vincent Cros & Paolo Bortolotti & Juan Trastoy & Kay Yakushiji & Akio Fukushima & Hitoshi Kubota & Shinji Yuasa & Maxence E, 2018. "Vowel recognition with four coupled spin-torque nano-oscillators," Nature, Nature, vol. 563(7730), pages 230-234, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klaus Raab & Maarten A. Brems & Grischa Beneke & Takaaki Dohi & Jan Rothörl & Fabian Kammerbauer & Johan H. Mentink & Mathias Kläui, 2022. "Brownian reservoir computing realized using geometrically confined skyrmion dynamics," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    2. Xing Chen & Flavio Abreu Araujo & Mathieu Riou & Jacob Torrejon & Dafiné Ravelosona & Wang Kang & Weisheng Zhao & Julie Grollier & Damien Querlioz, 2022. "Forecasting the outcome of spintronic experiments with Neural Ordinary Differential Equations," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Martina Ahlberg & Sunjae Chung & Sheng Jiang & Andreas Frisk & Maha Khademi & Roman Khymyn & Ahmad A. Awad & Q. Tuan Le & Hamid Mazraati & Majid Mohseni & Markus Weigand & Iuliia Bykova & Felix Groß &, 2022. "Freezing and thawing magnetic droplet solitons," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Haowen Ren & Xin Yu Zheng & Sanyum Channa & Guanzhong Wu & Daisy A. O’Mahoney & Yuri Suzuki & Andrew D. Kent, 2023. "Hybrid spin Hall nano-oscillators based on ferromagnetic metal/ferrimagnetic insulator heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    5. Ke Yang & Yanghao Wang & Pek Jun Tiw & Chaoming Wang & Xiaolong Zou & Rui Yuan & Chang Liu & Ge Li & Chen Ge & Si Wu & Teng Zhang & Ru Huang & Yuchao Yang, 2024. "High-order sensory processing nanocircuit based on coupled VO2 oscillators," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Mitsumasa Nakajima & Katsuma Inoue & Kenji Tanaka & Yasuo Kuniyoshi & Toshikazu Hashimoto & Kohei Nakajima, 2022. "Physical deep learning with biologically inspired training method: gradient-free approach for physical hardware," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Steffen Wittrock & Salvatore Perna & Romain Lebrun & Katia Ho & Roberta Dutra & Ricardo Ferreira & Paolo Bortolotti & Claudio Serpico & Vincent Cros, 2024. "Non-hermiticity in spintronics: oscillation death in coupled spintronic nano-oscillators through emerging exceptional points," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    8. Miguel Romera & Philippe Talatchian & Sumito Tsunegi & Kay Yakushiji & Akio Fukushima & Hitoshi Kubota & Shinji Yuasa & Vincent Cros & Paolo Bortolotti & Maxence Ernoult & Damien Querlioz & Julie Grol, 2022. "Binding events through the mutual synchronization of spintronic nano-neurons," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    9. Zhiwei Chen & Wenjie Li & Zhen Fan & Shuai Dong & Yihong Chen & Minghui Qin & Min Zeng & Xubing Lu & Guofu Zhou & Xingsen Gao & Jun-Ming Liu, 2023. "All-ferroelectric implementation of reservoir computing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Kilian D. Stenning & Jack C. Gartside & Luca Manneschi & Christopher T. S. Cheung & Tony Chen & Alex Vanstone & Jake Love & Holly Holder & Francesco Caravelli & Hidekazu Kurebayashi & Karin Everschor-, 2024. "Neuromorphic overparameterisation and few-shot learning in multilayer physical neural networks," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    11. Xiangpeng Liang & Yanan Zhong & Jianshi Tang & Zhengwu Liu & Peng Yao & Keyang Sun & Qingtian Zhang & Bin Gao & Hadi Heidari & He Qian & Huaqiang Wu, 2022. "Rotating neurons for all-analog implementation of cyclic reservoir computing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. S. Jiang & S. Chung & M. Ahlberg & A. Frisk & R. Khymyn & Q. Tuan Le & H. Mazraati & A. Houshang & O. Heinonen & J. Åkerman, 2024. "Magnetic droplet soliton pairs," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Zhuohui Liu & Qinghua Zhang & Donggang Xie & Mingzhen Zhang & Xinyan Li & Hai Zhong & Ge Li & Meng He & Dashan Shang & Can Wang & Lin Gu & Guozhen Yang & Kuijuan Jin & Chen Ge, 2023. "Interface-type tunable oxygen ion dynamics for physical reservoir computing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Keqiang Zhu & Mario Carpentieri & Like Zhang & Bin Fang & Jialin Cai & Roman Verba & Anna Giordano & Vito Puliafito & Baoshun Zhang & Giovanni Finocchio & Zhongming Zeng, 2023. "Nonlinear amplification of microwave signals in spin-torque oscillators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Sajid Husain & Isaac Harris & Peter Meisenheimer & Sukriti Mantri & Xinyan Li & Maya Ramesh & Piush Behera & Hossein Taghinejad & Jaegyu Kim & Pravin Kavle & Shiyu Zhou & Tae Yeon Kim & Hongrui Zhang , 2024. "Non-volatile magnon transport in a single domain multiferroic," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. ZhuangEn Fu & Piumi I. Samarawickrama & John Ackerman & Yanglin Zhu & Zhiqiang Mao & Kenji Watanabe & Takashi Taniguchi & Wenyong Wang & Yuri Dahnovsky & Mingzhong Wu & TeYu Chien & Jinke Tang & Allan, 2024. "Tunneling current-controlled spin states in few-layer van der Waals magnets," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Liao, Zhiqiang & Ma, Kaijie & Tang, Siyi & Sarker, Md Shamim & Yamahara, Hiroyasu & Tabata, Hitoshi, 2021. "Phase locking of ultra-low power consumption stochastic magnetic bits induced by colored noise," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    18. Yang Yiling & Katharine Shapcott & Alina Peter & Johanna Klon-Lipok & Huang Xuhui & Andreea Lazar & Wolf Singer, 2023. "Robust encoding of natural stimuli by neuronal response sequences in monkey visual cortex," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    19. Biao Qin & Muhammad Zeeshan Saeed & Qiuqiu Li & Manli Zhu & Ya Feng & Ziqi Zhou & Jingzhi Fang & Mongur Hossain & Zucheng Zhang & Yucheng Zhou & Ying Huangfu & Rong Song & Jingmei Tang & Bailing Li & , 2023. "General low-temperature growth of two-dimensional nanosheets from layered and nonlayered materials," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Yiming Sun & Tao Lin & Na Lei & Xing Chen & Wang Kang & Zhiyuan Zhao & Dahai Wei & Chao Chen & Simin Pang & Linglong Hu & Liu Yang & Enxuan Dong & Li Zhao & Lei Liu & Zhe Yuan & Aladin Ullrich & Chris, 2023. "Experimental demonstration of a skyrmion-enhanced strain-mediated physical reservoir computing system," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31493-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.