IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42043-6.html
   My bibliography  Save this article

Synthesis of piperidines and pyridine from furfural over a surface single-atom alloy Ru1CoNP catalyst

Author

Listed:
  • Haifeng Qi

    (Chinese Academy of Sciences
    Albert-Einstein-Straße 29a)

  • Yurou Li

    (East China University of Science and Technology)

  • Zhitong Zhou

    (Chinese Academy of Sciences)

  • Yueqiang Cao

    (East China University of Science and Technology)

  • Fei Liu

    (Chinese Academy of Sciences)

  • Weixiang Guan

    (Chinese Academy of Sciences)

  • Leilei Zhang

    (Chinese Academy of Sciences)

  • Xiaoyan Liu

    (Chinese Academy of Sciences)

  • Lin Li

    (Chinese Academy of Sciences)

  • Yang Su

    (Chinese Academy of Sciences)

  • Kathrin Junge

    (Albert-Einstein-Straße 29a)

  • Xuezhi Duan

    (East China University of Science and Technology)

  • Matthias Beller

    (Albert-Einstein-Straße 29a)

  • Aiqin Wang

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Tao Zhang

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

Abstract

The sustainable production of value-added N-heterocycles from available biomass allows to reduce the reliance on fossil resources and creates possibilities for economically and ecologically improved synthesis of fine and bulk chemicals. Herein, we present a unique Ru1CoNP/HAP surface single-atom alloy (SSAA) catalyst, which enables a new type of transformation from the bio-based platform chemical furfural to give N-heterocyclic piperidine. In the presence of NH3 and H2, the desired product is formed under mild conditions with a yield up to 93%. Kinetic studies show that the formation of piperidine proceeds via a series of reaction steps. Initially, in this cascade process, furfural amination to furfurylamine takes place, followed by hydrogenation to tetrahydrofurfurylamine (THFAM) and then ring rearrangement to piperidine. DFT calculations suggest that the Ru1CoNP SSAA structure facilitates the direct ring opening of THFAM resulting in 5-amino-1-pentanol which is quickly converted to piperidine. The value of the presented catalytic strategy is highlighted by the synthesis of an actual drug, alkylated piperidines, and pyridine.

Suggested Citation

  • Haifeng Qi & Yurou Li & Zhitong Zhou & Yueqiang Cao & Fei Liu & Weixiang Guan & Leilei Zhang & Xiaoyan Liu & Lin Li & Yang Su & Kathrin Junge & Xuezhi Duan & Matthias Beller & Aiqin Wang & Tao Zhang, 2023. "Synthesis of piperidines and pyridine from furfural over a surface single-atom alloy Ru1CoNP catalyst," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42043-6
    DOI: 10.1038/s41467-023-42043-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42043-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42043-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xi Zhang & Guoqing Cui & Haisong Feng & Lifang Chen & Hui Wang & Bin Wang & Xin Zhang & Lirong Zheng & Song Hong & Min Wei, 2019. "Platinum–copper single atom alloy catalysts with high performance towards glycerol hydrogenolysis," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    2. Haifeng Qi & Ji Yang & Fei Liu & LeiLei Zhang & Jingyi Yang & Xiaoyan Liu & Lin Li & Yang Su & Yuefeng Liu & Rui Hao & Aiqin Wang & Tao Zhang, 2021. "Highly selective and robust single-atom catalyst Ru1/NC for reductive amination of aldehydes/ketones," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bin Zhang & Haiyang Yuan & Ye Liu & Zijie Deng & Mark Douthwaite & Nicholas F. Dummer & Richard J. Lewis & Xingwu Liu & Sen Luan & Minghua Dong & Tianjiao Wang & Qingling Xu & Zhijuan Zhao & Huizhen L, 2024. "Ambient-pressure alkoxycarbonylation for sustainable synthesis of ester," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhidong An & Piaoping Yang & Delong Duan & Jiang Li & Tong Wan & Yue Kong & Stavros Caratzoulas & Shuting Xiang & Jiaxing Liu & Lei Huang & Anatoly I. Frenkel & Yuan-Ye Jiang & Ran Long & Zhenxing Li , 2023. "Highly active, ultra-low loading single-atom iron catalysts for catalytic transfer hydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Jiaqi Zhao & Jinjia Liu & Zhenhua Li & Kaiwen Wang & Run Shi & Pu Wang & Qing Wang & Geoffrey I. N. Waterhouse & Xiaodong Wen & Tierui Zhang, 2023. "Ruthenium-cobalt single atom alloy for CO photo-hydrogenation to liquid fuels at ambient pressures," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Jun Qi & Yadong Du & Qi Yang & Na Jiang & Jiachun Li & Yi Ma & Yangjun Ma & Xin Zhao & Jieshan Qiu, 2023. "Energy-saving and product-oriented hydrogen peroxide electrosynthesis enabled by electrochemistry pairing and product engineering," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Jing Xue & Xue Dong & Chunxiao Liu & Jiawei Li & Yizhou Dai & Weiqing Xue & Laihao Luo & Yuan Ji & Xiao Zhang & Xu Li & Qiu Jiang & Tingting Zheng & Jianping Xiao & Chuan Xia, 2024. "Turning copper into an efficient and stable CO evolution catalyst beyond noble metals," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Wei Liu & Haisong Feng & Yusen Yang & Yiming Niu & Lei Wang & Pan Yin & Song Hong & Bingsen Zhang & Xin Zhang & Min Wei, 2022. "Highly-efficient RuNi single-atom alloy catalysts toward chemoselective hydrogenation of nitroarenes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Zhongliang Huang & Shengnan Hu & Mingzi Sun & Yong Xu & Shangheng Liu & Renjie Ren & Lin Zhuang & Ting-Shan Chan & Zhiwei Hu & Tianyi Ding & Jing Zhou & Liangbin Liu & Mingmin Wang & Yu-Cheng Huang & , 2024. "Implanting oxophilic metal in PtRu nanowires for hydrogen oxidation catalysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Zhimin Jia & Xuetao Qin & Yunlei Chen & Xiangbin Cai & Zirui Gao & Mi Peng & Fei Huang & Dequan Xiao & Xiaodong Wen & Ning Wang & Zheng Jiang & Wu Zhou & Hongyang Liu & Ding Ma, 2022. "Fully-exposed Pt-Fe cluster for efficient preferential oxidation of CO towards hydrogen purification," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Yurui Fan & Haomiao Xu & Guanqun Gao & Mingming Wang & Wenjun Huang & Lei Ma & Yancai Yao & Zan Qu & Pengfei Xie & Bin Dai & Naiqiang Yan, 2024. "Asymmetric Ru-In atomic pairs promote highly active and stable acetylene hydrochlorination," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Liu-Chun Wang & Li-Chan Chang & Wen-Qi Chen & Yi-Hsin Chien & Po-Ya Chang & Chih-Wen Pao & Yin-Fen Liu & Hwo-Shuenn Sheu & Wen-Pin Su & Chen-Hao Yeh & Chen-Sheng Yeh, 2022. "Atomically dispersed golds on degradable zero-valent copper nanocubes augment oxygen driven Fenton-like reaction for effective orthotopic tumor therapy," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    10. Jia Zhao & Ricardo Urrego-Ortiz & Nan Liao & Federico Calle-Vallejo & Jingshan Luo, 2024. "Rationally designed Ru catalysts supported on TiN for highly efficient and stable hydrogen evolution in alkaline conditions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Zhe An & Zilong Zhang & Zeyu Huang & Hongbo Han & Binbin Song & Jian Zhang & Qi Ping & Yanru Zhu & Hongyan Song & Bin Wang & Lirong Zheng & Jing He, 2022. "Pt1 enhanced C-H activation synergistic with Ptn catalysis for glycerol cascade oxidation to glyceric acid," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Yunan Li & Lingling Guo & Meng Du & Chen Tian & Gui Zhao & Zhengwu Liu & Zhenye Liang & Kunming Hou & Junxiang Chen & Xi Liu & Luozhen Jiang & Bing Nan & Lina Li, 2024. "Unraveling distinct effects between CuOx and PtCu alloy sites in Pt−Cu bimetallic catalysts for CO oxidation at different temperatures," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Jingyi Yang & Yike Huang & Haifeng Qi & Chaobin Zeng & Qike Jiang & Yitao Cui & Yang Su & Xiaorui Du & Xiaoli Pan & Xiaoyan Liu & Weizhen Li & Botao Qiao & Aiqin Wang & Tao Zhang, 2022. "Modulating the strong metal-support interaction of single-atom catalysts via vicinal structure decoration," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Jiao Lan & Zengxi Wei & Ying-Rui Lu & DeChao Chen & Shuangliang Zhao & Ting-Shan Chan & Yongwen Tan, 2023. "Efficient electrosynthesis of formamide from carbon monoxide and nitrite on a Ru-dispersed Cu nanocluster catalyst," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Zhongkai Xie & Shengjie Xu & Longhua Li & Shanhe Gong & Xiaojie Wu & Dongbo Xu & Baodong Mao & Ting Zhou & Min Chen & Xiao Wang & Weidong Shi & Shuyan Song, 2024. "Well-defined diatomic catalysis for photosynthesis of C2H4 from CO2," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    16. Imtisal Zahid & Muhammad Ayoub & Bawadi Bin Abdullah & Muhammad Hamza Nazir & Zulqarnain & Mariam Ameen Kaimkhani & Farooq Sher, 2021. "Activation of Nano Kaolin Clay for Bio-Glycerol Conversion to a Valuable Fuel Additive," Sustainability, MDPI, vol. 13(5), pages 1-17, March.
    17. Dong Cao & Haoxiang Xu & Hongliang Li & Chen Feng & Jie Zeng & Daojian Cheng, 2022. "Volcano-type relationship between oxidation states and catalytic activity of single-atom catalysts towards hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42043-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.