IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38603-5.html
   My bibliography  Save this article

Efficient electrosynthesis of formamide from carbon monoxide and nitrite on a Ru-dispersed Cu nanocluster catalyst

Author

Listed:
  • Jiao Lan

    (Hunan University)

  • Zengxi Wei

    (Guangxi University)

  • Ying-Rui Lu

    (National Synchrotron Radiation Research Center)

  • DeChao Chen

    (Hunan University)

  • Shuangliang Zhao

    (Guangxi University)

  • Ting-Shan Chan

    (National Synchrotron Radiation Research Center)

  • Yongwen Tan

    (Hunan University)

Abstract

Conversion into high-value-added organic nitrogen compounds through electrochemical C-N coupling reactions under ambient conditions is regarded as a sustainable development strategy to achieve carbon neutrality and high-value utilization of harmful substances. Herein, we report an electrochemical process for selective synthesis of high-valued formamide from carbon monoxide and nitrite with a Ru1Cu single-atom alloy under ambient conditions, which achieves a high formamide selectivity with Faradaic efficiency of 45.65 ± 0.76% at −0.5 V vs. RHE. In situ X-ray absorption spectroscopy, coupled with in situ Raman spectroscopy and density functional theory calculations results reveal that the adjacent Ru-Cu dual active sites can spontaneously couple *CO and *NH2 intermediates to realize a critical C-N coupling reaction, enabling high-performance electrosynthesis of formamide. This work offers insight into the high-value formamide electrocatalysis through coupling CO and NO2− under ambient conditions, paving the way for the synthesis of more-sustainable and high-value chemical products.

Suggested Citation

  • Jiao Lan & Zengxi Wei & Ying-Rui Lu & DeChao Chen & Shuangliang Zhao & Ting-Shan Chan & Yongwen Tan, 2023. "Efficient electrosynthesis of formamide from carbon monoxide and nitrite on a Ru-dispersed Cu nanocluster catalyst," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38603-5
    DOI: 10.1038/s41467-023-38603-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38603-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38603-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pengsong Li & Maoyu Wang & Xinxuan Duan & Lirong Zheng & Xiaopeng Cheng & Yuefei Zhang & Yun Kuang & Yaping Li & Qing Ma & Zhenxing Feng & Wen Liu & Xiaoming Sun, 2019. "Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    2. Nannan Meng & Jiang Shao & Hongjiao Li & Yuting Wang & Xiaoli Fu & Cuibo Liu & Yifu Yu & Bin Zhang, 2022. "Electrosynthesis of formamide from methanol and ammonia under ambient conditions," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Linlin Cao & Qiquan Luo & Jiajia Chen & Lan Wang & Yue Lin & Huijuan Wang & Xiaokang Liu & Xinyi Shen & Wei Zhang & Wei Liu & Zeming Qi & Zheng Jiang & Jinlong Yang & Tao Yao, 2019. "Dynamic oxygen adsorption on single-atomic Ruthenium catalyst with high performance for acidic oxygen evolution reaction," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    4. Hui Su & Wanlin Zhou & Wu Zhou & Yuanli Li & Lirong Zheng & Hui Zhang & Meihuan Liu & Xiuxiu Zhang & Xuan Sun & Yanzhi Xu & Fengchun Hu & Jing Zhang & Tiandou Hu & Qinghua Liu & Shiqiang Wei, 2021. "In-situ spectroscopic observation of dynamic-coupling oxygen on atomically dispersed iridium electrocatalyst for acidic water oxidation," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    5. Xiaoxia Chang & Sudarshan Vijay & Yaran Zhao & Nicholas J. Oliveira & Karen Chan & Bingjun Xu, 2022. "Understanding the complementarities of surface-enhanced infrared and Raman spectroscopies in CO adsorption and electrochemical reduction," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Kang Jiang & Min Luo & Zhixiao Liu & Ming Peng & Dechao Chen & Ying-Rui Lu & Ting-Shan Chan & Frank M. F. Groot & Yongwen Tan, 2021. "Rational strain engineering of single-atom ruthenium on nanoporous MoS2 for highly efficient hydrogen evolution," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    7. Xiaozhi Su & Zhuoli Jiang & Jing Zhou & Hengjie Liu & Danni Zhou & Huishan Shang & Xingming Ni & Zheng Peng & Fan Yang & Wenxing Chen & Zeming Qi & Dingsheng Wang & Yu Wang, 2022. "Complementary Operando Spectroscopy identification of in-situ generated metastable charge-asymmetry Cu2-CuN3 clusters for CO2 reduction to ethanol," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Xi Zhang & Guoqing Cui & Haisong Feng & Lifang Chen & Hui Wang & Bin Wang & Xin Zhang & Lirong Zheng & Song Hong & Min Wei, 2019. "Platinum–copper single atom alloy catalysts with high performance towards glycerol hydrogenolysis," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    9. Yueshen Wu & Zhan Jiang & Zhichao Lin & Yongye Liang & Hailiang Wang, 2021. "Direct electrosynthesis of methylamine from carbon dioxide and nitrate," Nature Sustainability, Nature, vol. 4(8), pages 725-730, August.
    10. Weiwei Lei & David Portehault & Dan Liu & Si Qin & Ying Chen, 2013. "Porous boron nitride nanosheets for effective water cleaning," Nature Communications, Nature, vol. 4(1), pages 1-7, June.
    11. Vijaya R. Pattabiraman & Jeffrey W. Bode, 2011. "Rethinking amide bond synthesis," Nature, Nature, vol. 480(7378), pages 471-479, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nannan Meng & Jiang Shao & Hongjiao Li & Yuting Wang & Xiaoli Fu & Cuibo Liu & Yifu Yu & Bin Zhang, 2022. "Electrosynthesis of formamide from methanol and ammonia under ambient conditions," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Meng He & Yongmeng Wu & Rui Li & Yuting Wang & Cuibo Liu & Bin Zhang, 2023. "Aqueous pulsed electrochemistry promotes C−N bond formation via a one-pot cascade approach," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Kun Du & Lifu Zhang & Jieqiong Shan & Jiaxin Guo & Jing Mao & Chueh-Cheng Yang & Chia-Hsin Wang & Zhenpeng Hu & Tao Ling, 2022. "Interface engineering breaks both stability and activity limits of RuO2 for sustainable water oxidation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Jiaqi Zhao & Jinjia Liu & Zhenhua Li & Kaiwen Wang & Run Shi & Pu Wang & Qing Wang & Geoffrey I. N. Waterhouse & Xiaodong Wen & Tierui Zhang, 2023. "Ruthenium-cobalt single atom alloy for CO photo-hydrogenation to liquid fuels at ambient pressures," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Jie Wei & Hua Tang & Li Sheng & Ruyang Wang & Minghui Fan & Jiale Wan & Yuheng Wu & Zhirong Zhang & Shiming Zhou & Jie Zeng, 2024. "Site-specific metal-support interaction to switch the activity of Ir single atoms for oxygen evolution reaction," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Yilong Zhao & Yunxuan Ding & Wenlong Li & Chang Liu & Yingzheng Li & Ziqi Zhao & Yu Shan & Fei Li & Licheng Sun & Fusheng Li, 2023. "Efficient urea electrosynthesis from carbon dioxide and nitrate via alternating Cu–W bimetallic C–N coupling sites," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Pengcheng Ye & Keqing Fang & Haiyan Wang & Yahao Wang & Hao Huang & Chenbin Mo & Jiqiang Ning & Yong Hu, 2024. "Lattice oxygen activation and local electric field enhancement by co-doping Fe and F in CoO nanoneedle arrays for industrial electrocatalytic water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Jing Xue & Xue Dong & Chunxiao Liu & Jiawei Li & Yizhou Dai & Weiqing Xue & Laihao Luo & Yuan Ji & Xiao Zhang & Xu Li & Qiu Jiang & Tingting Zheng & Jianping Xiao & Chuan Xia, 2024. "Turning copper into an efficient and stable CO evolution catalyst beyond noble metals," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Zhaoping Shi & Ji Li & Yibo Wang & Shiwei Liu & Jianbing Zhu & Jiahao Yang & Xian Wang & Jing Ni & Zheng Jiang & Lijuan Zhang & Ying Wang & Changpeng Liu & Wei Xing & Junjie Ge, 2023. "Customized reaction route for ruthenium oxide towards stabilized water oxidation in high-performance PEM electrolyzers," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Lingyou Zeng & Zhonglong Zhao & Fan Lv & Zhonghong Xia & Shi-Yu Lu & Jiong Li & Kaian Sun & Kai Wang & Yingjun Sun & Qizheng Huang & Yan Chen & Qinghua Zhang & Lin Gu & Gang Lu & Shaojun Guo, 2022. "Anti-dissolution Pt single site with Pt(OH)(O3)/Co(P) coordination for efficient alkaline water splitting electrolyzer," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Dongpeng Zhang & Yanxiao Li & Pengfei Wang & Jinyong Qu & Yi Li & Sihui Zhan, 2023. "Dynamic active-site induced by host-guest interactions boost the Fenton-like reaction for organic wastewater treatment," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Tao Zhang & Qitong Ye & Zengyu Han & Qingyi Liu & Yipu Liu & Dongshuang Wu & Hong Jin Fan, 2024. "Biaxial strain induced OH engineer for accelerating alkaline hydrogen evolution," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Xin Liu & Yan Jiao & Yao Zheng & Mietek Jaroniec & Shi-Zhang Qiao, 2022. "Mechanism of C-N bonds formation in electrocatalytic urea production revealed by ab initio molecular dynamics simulation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Ruiling Zhang & Yaozhou Li & Xuan Zhou & Ao Yu & Qi Huang & Tingting Xu & Longtao Zhu & Ping Peng & Shuyan Song & Luis Echegoyen & Fang-Fang Li, 2023. "Single-atomic platinum on fullerene C60 surfaces for accelerated alkaline hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Lili Zhang & Ning Zhang & Huishan Shang & Zhiyi Sun & Zihao Wei & Jingtao Wang & Yuanting Lei & Xiaochen Wang & Dan Wang & Yafei Zhao & Zhongti Sun & Fang Zhang & Xu Xiang & Bing Zhang & Wenxing Chen, 2024. "High-density asymmetric iron dual-atom sites for efficient and stable electrochemical water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    16. Yinchao Yao & Tong Shi & Wenxing Chen & Jiehua Wu & Yunying Fan & Yichun Liu & Liang Cao & Zhuo Chen, 2024. "A surface strategy boosting the ethylene selectivity for CO2 reduction and in situ mechanistic insights," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Eamonn Murphy & Yuanchao Liu & Ivana Matanovic & Martina Rüscher & Ying Huang & Alvin Ly & Shengyuan Guo & Wenjie Zang & Xingxu Yan & Andrea Martini & Janis Timoshenko & Beatriz Roldán Cuenya & Iryna , 2023. "Elucidating electrochemical nitrate and nitrite reduction over atomically-dispersed transition metal sites," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    18. Guokang Han & Xue Zhang & Wei Liu & Qinghua Zhang & Zhiqiang Wang & Jun Cheng & Tao Yao & Lin Gu & Chunyu Du & Yunzhi Gao & Geping Yin, 2021. "Substrate strain tunes operando geometric distortion and oxygen reduction activity of CuN2C2 single-atom sites," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    19. Liu-Chun Wang & Li-Chan Chang & Wen-Qi Chen & Yi-Hsin Chien & Po-Ya Chang & Chih-Wen Pao & Yin-Fen Liu & Hwo-Shuenn Sheu & Wen-Pin Su & Chen-Hao Yeh & Chen-Sheng Yeh, 2022. "Atomically dispersed golds on degradable zero-valent copper nanocubes augment oxygen driven Fenton-like reaction for effective orthotopic tumor therapy," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    20. Zhidong An & Piaoping Yang & Delong Duan & Jiang Li & Tong Wan & Yue Kong & Stavros Caratzoulas & Shuting Xiang & Jiaxing Liu & Lei Huang & Anatoly I. Frenkel & Yuan-Ye Jiang & Ran Long & Zhenxing Li , 2023. "Highly active, ultra-low loading single-atom iron catalysts for catalytic transfer hydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38603-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.