IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v472y2011i7343d10.1038_nature09994.html
   My bibliography  Save this article

Quantum simulation of antiferromagnetic spin chains in an optical lattice

Author

Listed:
  • Jonathan Simon

    (Harvard University)

  • Waseem S. Bakr

    (Harvard University)

  • Ruichao Ma

    (Harvard University)

  • M. Eric Tai

    (Harvard University)

  • Philipp M. Preiss

    (Harvard University)

  • Markus Greiner

    (Harvard University)

Abstract

Understanding exotic forms of magnetism in quantum mechanical systems is a central goal of modern condensed matter physics, with implications for systems ranging from high-temperature superconductors to spintronic devices. Simulating magnetic materials in the vicinity of a quantum phase transition is computationally intractable on classical computers, owing to the extreme complexity arising from quantum entanglement between the constituent magnetic spins. Here we use a degenerate Bose gas of rubidium atoms confined in an optical lattice to simulate a chain of interacting quantum Ising spins as they undergo a phase transition. Strong spin interactions are achieved through a site-occupation to pseudo-spin mapping. As we vary a magnetic field, quantum fluctuations drive a phase transition from a paramagnetic phase into an antiferromagnetic phase. In the paramagnetic phase, the interaction between the spins is overwhelmed by the applied field, which aligns the spins. In the antiferromagnetic phase, the interaction dominates and produces staggered magnetic ordering. Magnetic domain formation is observed through both in situ site-resolved imaging and noise correlation measurements. By demonstrating a route to quantum magnetism in an optical lattice, this work should facilitate further investigations of magnetic models using ultracold atoms, thereby improving our understanding of real magnetic materials.

Suggested Citation

  • Jonathan Simon & Waseem S. Bakr & Ruichao Ma & M. Eric Tai & Philipp M. Preiss & Markus Greiner, 2011. "Quantum simulation of antiferromagnetic spin chains in an optical lattice," Nature, Nature, vol. 472(7343), pages 307-312, April.
  • Handle: RePEc:nat:nature:v:472:y:2011:i:7343:d:10.1038_nature09994
    DOI: 10.1038/nature09994
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature09994
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature09994?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea Carli & Christopher Parsonage & Arthur Rooij & Lennart Koehn & Clemens Ulm & Callum W. Duncan & Andrew J. Daley & Elmar Haller & Stefan Kuhr, 2024. "Commensurate and incommensurate 1D interacting quantum systems," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Shuangzan Lu & Deping Guo & Zhengbo Cheng & Yanping Guo & Cong Wang & Jinghao Deng & Yusong Bai & Cheng Tian & Linwei Zhou & Youguo Shi & Jun He & Wei Ji & Chendong Zhang, 2023. "Controllable dimensionality conversion between 1D and 2D CrCl3 magnetic nanostructures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Stefan Birnkammer & Alvise Bastianello & Michael Knap, 2022. "Prethermalization in one-dimensional quantum many-body systems with confinement," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:472:y:2011:i:7343:d:10.1038_nature09994. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.