IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35280-8.html
   My bibliography  Save this article

A unifying Bayesian framework for merging X-ray diffraction data

Author

Listed:
  • Kevin M. Dalton

    (Harvard University)

  • Jack B. Greisman

    (Harvard University)

  • Doeke R. Hekstra

    (Harvard University
    Harvard University)

Abstract

Novel X-ray methods are transforming the study of the functional dynamics of biomolecules. Key to this revolution is detection of often subtle conformational changes from diffraction data. Diffraction data contain patterns of bright spots known as reflections. To compute the electron density of a molecule, the intensity of each reflection must be estimated, and redundant observations reduced to consensus intensities. Systematic effects, however, lead to the measurement of equivalent reflections on different scales, corrupting observation of changes in electron density. Here, we present a modern Bayesian solution to this problem, which uses deep learning and variational inference to simultaneously rescale and merge reflection observations. We successfully apply this method to monochromatic and polychromatic single-crystal diffraction data, as well as serial femtosecond crystallography data. We find that this approach is applicable to the analysis of many types of diffraction experiments, while accurately and sensitively detecting subtle dynamics and anomalous scattering.

Suggested Citation

  • Kevin M. Dalton & Jack B. Greisman & Doeke R. Hekstra, 2022. "A unifying Bayesian framework for merging X-ray diffraction data," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35280-8
    DOI: 10.1038/s41467-022-35280-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35280-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35280-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Doeke R. Hekstra & K. Ian White & Michael A. Socolich & Robert W. Henning & Vukica Šrajer & Rama Ranganathan, 2016. "Electric-field-stimulated protein mechanics," Nature, Nature, vol. 540(7633), pages 400-405, December.
    2. David M. Blei & Alp Kucukelbir & Jon D. McAuliffe, 2017. "Variational Inference: A Review for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 859-877, April.
    3. Michihiro Suga & Fusamichi Akita & Michihiro Sugahara & Minoru Kubo & Yoshiki Nakajima & Takanori Nakane & Keitaro Yamashita & Yasufumi Umena & Makoto Nakabayashi & Takahiro Yamane & Takamitsu Nakano , 2017. "Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL," Nature, Nature, vol. 543(7643), pages 131-135, March.
    4. Henry N. Chapman & Petra Fromme & Anton Barty & Thomas A. White & Richard A. Kirian & Andrew Aquila & Mark S. Hunter & Joachim Schulz & Daniel P. DePonte & Uwe Weierstall & R. Bruce Doak & Filipe R. N, 2011. "Femtosecond X-ray protein nanocrystallography," Nature, Nature, vol. 470(7332), pages 73-77, February.
    5. Jan Kern & Rosalie Tran & Roberto Alonso-Mori & Sergey Koroidov & Nathaniel Echols & Johan Hattne & Mohamed Ibrahim & Sheraz Gul & Hartawan Laksmono & Raymond G. Sierra & Richard J. Gildea & Guangye H, 2014. "Taking snapshots of photosynthetic water oxidation using femtosecond X-ray diffraction and spectroscopy," Nature Communications, Nature, vol. 5(1), pages 1-11, September.
    6. Max O. Wiedorn & Dominik Oberthür & Richard Bean & Robin Schubert & Nadine Werner & Brian Abbey & Martin Aepfelbacher & Luigi Adriano & Aschkan Allahgholi & Nasser Al-Qudami & Jakob Andreasson & Steve, 2018. "Megahertz serial crystallography," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    7. Yanyong Kang & X. Edward Zhou & Xiang Gao & Yuanzheng He & Wei Liu & Andrii Ishchenko & Anton Barty & Thomas A. White & Oleksandr Yefanov & Gye Won Han & Qingping Xu & Parker W. de Waal & Jiyuan Ke & , 2015. "Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser," Nature, Nature, vol. 523(7562), pages 561-567, July.
    8. A. Meents & M. O. Wiedorn & V. Srajer & R. Henning & I. Sarrou & J. Bergtholdt & M. Barthelmess & P. Y. A. Reinke & D. Dierksmeyer & A. Tolstikova & S. Schaible & M. Messerschmidt & C. M. Ogata & D. J, 2017. "Pink-beam serial crystallography," Nature Communications, Nature, vol. 8(1), pages 1-12, December.
    9. Charles R. Harris & K. Jarrod Millman & Stéfan J. Walt & Ralf Gommers & Pauli Virtanen & David Cournapeau & Eric Wieser & Julian Taylor & Sebastian Berg & Nathaniel J. Smith & Robert Kern & Matti Picu, 2020. "Array programming with NumPy," Nature, Nature, vol. 585(7825), pages 357-362, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikolaos Virtsionis Gkalinikis & Christoforos Nalmpantis & Dimitris Vrakas, 2022. "Torch-NILM: An Effective Deep Learning Toolkit for Non-Intrusive Load Monitoring in Pytorch," Energies, MDPI, vol. 15(7), pages 1-20, April.
    2. Susannah Holmes & Henry J. Kirkwood & Richard Bean & Klaus Giewekemeyer & Andrew V. Martin & Marjan Hadian-Jazi & Max O. Wiedorn & Dominik Oberthür & Hugh Marman & Luigi Adriano & Nasser Al-Qudami & S, 2022. "Megahertz pulse trains enable multi-hit serial femtosecond crystallography experiments at X-ray free electron lasers," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Guillaume Tetreau & Michael R. Sawaya & Elke Zitter & Elena A. Andreeva & Anne-Sophie Banneville & Natalie A. Schibrowsky & Nicolas Coquelle & Aaron S. Brewster & Marie Luise Grünbein & Gabriela Nass , 2022. "De novo determination of mosquitocidal Cry11Aa and Cry11Ba structures from naturally-occurring nanocrystals," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    4. M. Wilamowski & D. A. Sherrell & Y. Kim & A. Lavens & R. W. Henning & K. Lazarski & A. Shigemoto & M. Endres & N. Maltseva & G. Babnigg & S. C. Burdette & V. Srajer & A. Joachimiak, 2022. "Time-resolved β-lactam cleavage by L1 metallo-β-lactamase," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Tan Wang & L. Jeff Hong, 2023. "Large-Scale Inventory Optimization: A Recurrent Neural Networks–Inspired Simulation Approach," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 196-215, January.
    6. Léon Faure & Bastien Mollet & Wolfram Liebermeister & Jean-Loup Faulon, 2023. "A neural-mechanistic hybrid approach improving the predictive power of genome-scale metabolic models," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Claudia Quinteros-Cartaya & Guillermo Solorio-Magaña & Francisco Javier Núñez-Cornú & Felipe de Jesús Escalona-Alcázar & Diana Núñez, 2023. "Microearthquakes in the Guadalajara Metropolitan Zone, Mexico: evidence from buried active faults in Tesistán Valley, Zapopan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 2797-2818, April.
    8. Furqan Dar & Samuel R. Cohen & Diana M. Mitrea & Aaron H. Phillips & Gergely Nagy & Wellington C. Leite & Christopher B. Stanley & Jeong-Mo Choi & Richard W. Kriwacki & Rohit V. Pappu, 2024. "Biomolecular condensates form spatially inhomogeneous network fluids," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    9. Nina Tiel & Fabian Fopp & Philipp Brun & Johan Hoogen & Dirk Nikolaus Karger & Cecilia M. Casadei & Lisha Lyu & Devis Tuia & Niklaus E. Zimmermann & Thomas W. Crowther & Loïc Pellissier, 2024. "Regional uniqueness of tree species composition and response to forest loss and climate change," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Shen Liu & Hongyan Liu, 2021. "Tagging Items Automatically Based on Both Content Information and Browsing Behaviors," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 882-897, July.
    11. López Pérez, Mario & Mansilla Corona, Ricardo, 2022. "Ordinal synchronization and typical states in high-frequency digital markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    12. Rana Hussein & Mohamed Ibrahim & Asmit Bhowmick & Philipp S. Simon & Ruchira Chatterjee & Louise Lassalle & Margaret Doyle & Isabel Bogacz & In-Sik Kim & Mun Hon Cheah & Sheraz Gul & Casper Lichtenber, 2021. "Structural dynamics in the water and proton channels of photosystem II during the S2 to S3 transition," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    13. Loaiza-Maya, Rubén & Smith, Michael Stanley & Nott, David J. & Danaher, Peter J., 2022. "Fast and accurate variational inference for models with many latent variables," Journal of Econometrics, Elsevier, vol. 230(2), pages 339-362.
    14. Jessica M. Vanslambrouck & Sean B. Wilson & Ker Sin Tan & Ella Groenewegen & Rajeev Rudraraju & Jessica Neil & Kynan T. Lawlor & Sophia Mah & Michelle Scurr & Sara E. Howden & Kanta Subbarao & Melissa, 2022. "Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    15. Kiran Krishnamachari & Dylan Lu & Alexander Swift-Scott & Anuar Yeraliyev & Kayla Lee & Weitai Huang & Sim Ngak Leng & Anders Jacobsen Skanderup, 2022. "Accurate somatic variant detection using weakly supervised deep learning," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    16. Larissa Samaan & Leonie Klock & Sandra Weber & Mirjam Reidick & Leonie Ascone & Simone Kühn, 2024. "Low-Level Visual Features of Window Views Contribute to Perceived Naturalness and Mental Health Outcomes," IJERPH, MDPI, vol. 21(5), pages 1-35, May.
    17. Dennis Bontempi & Leonard Nuernberg & Suraj Pai & Deepa Krishnaswamy & Vamsi Thiriveedhi & Ahmed Hosny & Raymond H. Mak & Keyvan Farahani & Ron Kikinis & Andrey Fedorov & Hugo J. W. L. Aerts, 2024. "End-to-end reproducible AI pipelines in radiology using the cloud," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Lauren L. Porter & Allen K. Kim & Swechha Rimal & Loren L. Looger & Ananya Majumdar & Brett D. Mensh & Mary R. Starich & Marie-Paule Strub, 2022. "Many dissimilar NusG protein domains switch between α-helix and β-sheet folds," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    19. Oren Amsalem & Hidehiko Inagaki & Jianing Yu & Karel Svoboda & Ran Darshan, 2024. "Sub-threshold neuronal activity and the dynamical regime of cerebral cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    20. Xing Qin & Shuangge Ma & Mengyun Wu, 2023. "Two‐level Bayesian interaction analysis for survival data incorporating pathway information," Biometrics, The International Biometric Society, vol. 79(3), pages 1761-1774, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35280-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.