IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34926-x.html
   My bibliography  Save this article

Back-illuminated photoelectrochemical flow cell for efficient CO2 reduction

Author

Listed:
  • Bin Liu

    (Tianjin University
    Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
    Haihe Laboratory of Sustainable Chemical Transformations
    Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City)

  • Tuo Wang

    (Tianjin University
    Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
    Haihe Laboratory of Sustainable Chemical Transformations)

  • Shujie Wang

    (Tianjin University
    Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
    Haihe Laboratory of Sustainable Chemical Transformations)

  • Gong Zhang

    (Tianjin University
    Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
    Haihe Laboratory of Sustainable Chemical Transformations)

  • Dazhong Zhong

    (Tianjin University
    Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
    Haihe Laboratory of Sustainable Chemical Transformations)

  • Tenghui Yuan

    (Tianjin University
    Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
    Haihe Laboratory of Sustainable Chemical Transformations)

  • Hao Dong

    (Tianjin University
    Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
    Haihe Laboratory of Sustainable Chemical Transformations)

  • Bo Wu

    (Tianjin University
    Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
    Haihe Laboratory of Sustainable Chemical Transformations)

  • Jinlong Gong

    (Tianjin University
    Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
    Haihe Laboratory of Sustainable Chemical Transformations
    Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City)

Abstract

Photoelectrochemical CO2 reduction reaction flow cells are promising devices to meet the requirements to produce solar fuels at the industrial scale. Photoelectrodes with wide bandgaps do not allow for efficient CO2 reduction at high current densities, while the integration of opaque photoelectrodes with narrow bandgaps in flow cell configurations still remains a challenge. This paper describes the design and fabrication of a back-illuminated Si photoanode promoted PEC flow cell for CO2 reduction reaction. The illumination area and catalytic sites of the Si photoelectrode are decoupled, owing to the effective passivation of defect states that allows for the long minority carrier diffusion length, that surpasses the thickness of the Si substrate. Hence, a solar-to-fuel conversion efficiency of CO of 2.42% and a Faradaic efficiency of 90% using Ag catalysts are achieved. For CO2 to C2+ products, the Faradaic efficiency of 53% and solar-to-fuel of 0.29% are achieved using Cu catalyst in flow cell.

Suggested Citation

  • Bin Liu & Tuo Wang & Shujie Wang & Gong Zhang & Dazhong Zhong & Tenghui Yuan & Hao Dong & Bo Wu & Jinlong Gong, 2022. "Back-illuminated photoelectrochemical flow cell for efficient CO2 reduction," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34926-x
    DOI: 10.1038/s41467-022-34926-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34926-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34926-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yanhao Yu & Zheng Zhang & Xin Yin & Alexander Kvit & Qingliang Liao & Zhuo Kang & Xiaoqin Yan & Yue Zhang & Xudong Wang, 2017. "Enhanced photoelectrochemical efficiency and stability using a conformal TiO2 film on a black silicon photoanode," Nature Energy, Nature, vol. 2(6), pages 1-7, June.
    2. Joshua A. Rabinowitz & Matthew W. Kanan, 2020. "The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem," Nature Communications, Nature, vol. 11(1), pages 1-3, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xue Zhou & Baihe Fu & Linjuan Li & Zheng Tian & Xiankui Xu & Zihao Wu & Jing Yang & Zhonghai Zhang, 2022. "Hydrogen-substituted graphdiyne encapsulated cuprous oxide photocathode for efficient and stable photoelectrochemical water reduction," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Mengran Li & Erdem Irtem & Hugo-Pieter Iglesias van Montfort & Maryam Abdinejad & Thomas Burdyny, 2022. "Energy comparison of sequential and integrated CO2 capture and electrochemical conversion," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Fiammetta Rita Bianchi & Barbara Bosio, 2021. "Operating Principles, Performance and Technology Readiness Level of Reversible Solid Oxide Cells," Sustainability, MDPI, vol. 13(9), pages 1-23, April.
    4. Xiaojie She & Lingling Zhai & Yifei Wang & Pei Xiong & Molly Meng-Jung Li & Tai-Sing Wu & Man Chung Wong & Xuyun Guo & Zhihang Xu & Huaming Li & Hui Xu & Ye Zhu & Shik Chi Edman Tsang & Shu Ping Lau, 2024. "Pure-water-fed, electrocatalytic CO2 reduction to ethylene beyond 1,000 h stability at 10 A," Nature Energy, Nature, vol. 9(1), pages 81-91, January.
    5. Agnes E. Thorarinsdottir & Samuel S. Veroneau & Daniel G. Nocera, 2022. "Self-healing oxygen evolution catalysts," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Erfan Shirzadi & Qiu Jin & Ali Shayesteh Zeraati & Roham Dorakhan & Tiago J. Goncalves & Jehad Abed & Byoung-Hoon Lee & Armin Sedighian Rasouli & Joshua Wicks & Jinqiang Zhang & Pengfei Ou & Victor Bo, 2024. "Ligand-modified nanoparticle surfaces influence CO electroreduction selectivity," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Shoujie Li & Wei Chen & Xiao Dong & Chang Zhu & Aohui Chen & Yanfang Song & Guihua Li & Wei Wei & Yuhan Sun, 2022. "Hierarchical micro/nanostructured silver hollow fiber boosts electroreduction of carbon dioxide," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Hugo-Pieter Iglesias van Montfort & Mengran Li & Erdem Irtem & Maryam Abdinejad & Yuming Wu & Santosh K. Pal & Mark Sassenburg & Davide Ripepi & Siddhartha Subramanian & Jasper Biemolt & Thomas E. Ruf, 2023. "Non-invasive current collectors for improved current-density distribution during CO2 electrolysis on super-hydrophobic electrodes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Kezia Megagita Gerby Langie & Kyungjae Tak & Changsoo Kim & Hee Won Lee & Kwangho Park & Dongjin Kim & Wonsang Jung & Chan Woo Lee & Hyung-Suk Oh & Dong Ki Lee & Jai Hyun Koh & Byoung Koun Min & Da Hy, 2022. "Toward economical application of carbon capture and utilization technology with near-zero carbon emission," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Ke Xie & Rui Kai Miao & Adnan Ozden & Shijie Liu & Zhu Chen & Cao-Thang Dinh & Jianan Erick Huang & Qiucheng Xu & Christine M. Gabardo & Geonhui Lee & Jonathan P. Edwards & Colin P. O’Brien & Shannon , 2022. "Bipolar membrane electrolyzers enable high single-pass CO2 electroreduction to multicarbon products," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Cornelius A. Obasanjo & Guorui Gao & Jackson Crane & Viktoria Golovanova & F. Pelayo García de Arquer & Cao-Thang Dinh, 2023. "High-rate and selective conversion of CO2 from aqueous solutions to hydrocarbons," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Shashwati C. Cunha & Joaquin Resasco, 2023. "Maximizing single-pass conversion does not result in practical readiness for CO2 reduction electrolyzers," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    13. Hai-Gang Qin & Yun-Fan Du & Yi-Yang Bai & Fu-Zhi Li & Xian Yue & Hao Wang & Jian-Zhao Peng & Jun Gu, 2023. "Surface-immobilized cross-linked cationic polyelectrolyte enables CO2 reduction with metal cation-free acidic electrolyte," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Yutao Dong & Mehrdad Abbasi & Jun Meng & Lazarus German & Corey Carlos & Jun Li & Ziyi Zhang & Dane Morgan & Jinwoo Hwang & Xudong Wang, 2023. "Substantial lifetime enhancement for Si-based photoanodes enabled by amorphous TiO2 coating with improved stoichiometry," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Xueping Qin & Heine A. Hansen & Karoliina Honkala & Marko M. Melander, 2023. "Cation-induced changes in the inner- and outer-sphere mechanisms of electrocatalytic CO2 reduction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Haifeng Shen & Huanyu Jin & Haobo Li & Herui Wang & Jingjing Duan & Yan Jiao & Shi-Zhang Qiao, 2023. "Acidic CO2-to-HCOOH electrolysis with industrial-level current on phase engineered tin sulfide," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Jing Li & Haocheng Xiong & Xiaozhi Liu & Donghuan Wu & Dong Su & Bingjun Xu & Qi Lu, 2023. "Weak CO binding sites induced by Cu–Ag interfaces promote CO electroreduction to multi-carbon liquid products," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Ke Xie & Adnan Ozden & Rui Kai Miao & Yuhang Li & David Sinton & Edward H. Sargent, 2022. "Eliminating the need for anodic gas separation in CO2 electroreduction systems via liquid-to-liquid anodic upgrading," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34926-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.