Substantial lifetime enhancement for Si-based photoanodes enabled by amorphous TiO2 coating with improved stoichiometry
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-023-37154-z
Download full text from publisher
References listed on IDEAS
- Yanhao Yu & Zheng Zhang & Xin Yin & Alexander Kvit & Qingliang Liao & Zhuo Kang & Xiaoqin Yan & Yue Zhang & Xudong Wang, 2017. "Enhanced photoelectrochemical efficiency and stability using a conformal TiO2 film on a black silicon photoanode," Nature Energy, Nature, vol. 2(6), pages 1-7, June.
- Ibadillah A. Digdaya & Gede W. P. Adhyaksa & Bartek J. Trześniewski & Erik C. Garnett & Wilson A. Smith, 2017. "Interfacial engineering of metal-insulator-semiconductor junctions for efficient and stable photoelectrochemical water oxidation," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xue Zhou & Baihe Fu & Linjuan Li & Zheng Tian & Xiankui Xu & Zihao Wu & Jing Yang & Zhonghai Zhang, 2022. "Hydrogen-substituted graphdiyne encapsulated cuprous oxide photocathode for efficient and stable photoelectrochemical water reduction," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Bin Liu & Tuo Wang & Shujie Wang & Gong Zhang & Dazhong Zhong & Tenghui Yuan & Hao Dong & Bo Wu & Jinlong Gong, 2022. "Back-illuminated photoelectrochemical flow cell for efficient CO2 reduction," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
- Sanghyun Bae & Thomas Moehl & Erin Service & Minjung Kim & Pardis Adams & Zhenbin Wang & Yuri Choi & Jungki Ryu & S. David Tilley, 2024. "A hole-selective hybrid TiO2 layer for stable and low-cost photoanodes in solar water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
- Chao Feng & Zhi Liu & Huanxin Ju & Andraž Mavrič & Matjaz Valant & Jie Fu & Beibei Zhang & Yanbo Li, 2024. "Understanding the in-situ transformation of CuxO interlayers to increase the water splitting efficiency in NiO/n-Si photoanodes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37154-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.