Reactive capture of CO2 via amino acid
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-024-51908-3
Download full text from publisher
References listed on IDEAS
- Ahmad, Naveed & Wang, Xiaoxiao & Sun, Peixu & Chen, Ying & Rehman, Fahad & Xu, Jian & Xu, Xia, 2021. "Electrochemical CO2 reduction to CO facilitated by MDEA-based deep eutectic solvent in aqueous solution," Renewable Energy, Elsevier, vol. 177(C), pages 23-33.
- Byung Hee Ko & Bjorn Hasa & Haeun Shin & Emily Jeng & Sean Overa & Wilson Chen & Feng Jiao, 2020. "The impact of nitrogen oxides on electrochemical carbon dioxide reduction," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
- Buttler, Alexander & Spliethoff, Hartmut, 2018. "Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2440-2454.
- Flavien M. Brethomé & Neil J. Williams & Charles A. Seipp & Michelle K. Kidder & Radu Custelcean, 2018. "Direct air capture of CO2 via aqueous-phase absorption and crystalline-phase release using concentrated solar power," Nature Energy, Nature, vol. 3(7), pages 553-559, July.
- Geonhui Lee & Yuguang C. Li & Ji-Yong Kim & Tao Peng & Dae-Hyun Nam & Armin Sedighian Rasouli & Fengwang Li & Mingchuan Luo & Alexander H. Ip & Young-Chang Joo & Edward H. Sargent, 2021. "Electrochemical upgrade of CO2 from amine capture solution," Nature Energy, Nature, vol. 6(1), pages 46-53, January.
- Mengran Li & Erdem Irtem & Hugo-Pieter Iglesias van Montfort & Maryam Abdinejad & Thomas Burdyny, 2022. "Energy comparison of sequential and integrated CO2 capture and electrochemical conversion," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Joshua A. Rabinowitz & Matthew W. Kanan, 2020. "The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem," Nature Communications, Nature, vol. 11(1), pages 1-3, December.
- Guobin Wen & Bohua Ren & Xin Wang & Dan Luo & Haozhen Dou & Yun Zheng & Rui Gao & Jeff Gostick & Aiping Yu & Zhongwei Chen, 2022. "Continuous CO2 electrolysis using a CO2 exsolution-induced flow cell," Nature Energy, Nature, vol. 7(10), pages 978-988, October.
- Chade Lv & Lixiang Zhong & Hengjie Liu & Zhiwei Fang & Chunshuang Yan & Mengxin Chen & Yi Kong & Carmen Lee & Daobin Liu & Shuzhou Li & Jiawei Liu & Li Song & Gang Chen & Qingyu Yan & Guihua Yu, 2021. "Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide," Nature Sustainability, Nature, vol. 4(10), pages 868-876, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mengran Li & Erdem Irtem & Hugo-Pieter Iglesias van Montfort & Maryam Abdinejad & Thomas Burdyny, 2022. "Energy comparison of sequential and integrated CO2 capture and electrochemical conversion," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Cornelius A. Obasanjo & Guorui Gao & Jackson Crane & Viktoria Golovanova & F. Pelayo García de Arquer & Cao-Thang Dinh, 2023. "High-rate and selective conversion of CO2 from aqueous solutions to hydrocarbons," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Mengran Li & Eric W. Lees & Wen Ju & Siddhartha Subramanian & Kailun Yang & Justin C. Bui & Hugo-Pieter Iglesias van Montfort & Maryam Abdinejad & Joost Middelkoop & Peter Strasser & Adam Z. Weber & A, 2024. "Local ionic transport enables selective PGM-free bipolar membrane electrode assembly," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Ahmad, Naveed & Chen, Ying & Wang, Xiaoxiao & Sun, Peixu & Bao, Yuting & Xu, Xia, 2022. "Highly efficient electrochemical upgrade of CO2 to CO using AMP capture solution as electrolyte," Renewable Energy, Elsevier, vol. 189(C), pages 444-453.
- Fiammetta Rita Bianchi & Barbara Bosio, 2021. "Operating Principles, Performance and Technology Readiness Level of Reversible Solid Oxide Cells," Sustainability, MDPI, vol. 13(9), pages 1-23, April.
- Shoujie Li & Xiao Dong & Gangfeng Wu & Yanfang Song & Jianing Mao & Aohui Chen & Chang Zhu & Guihua Li & Yiheng Wei & Xiaohu Liu & Jiangjiang Wang & Wei Chen & Wei Wei, 2024. "Ampere-level CO2 electroreduction with single-pass conversion exceeding 85% in acid over silver penetration electrodes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Kezia Megagita Gerby Langie & Kyungjae Tak & Changsoo Kim & Hee Won Lee & Kwangho Park & Dongjin Kim & Wonsang Jung & Chan Woo Lee & Hyung-Suk Oh & Dong Ki Lee & Jai Hyun Koh & Byoung Koun Min & Da Hy, 2022. "Toward economical application of carbon capture and utilization technology with near-zero carbon emission," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
- Razmi, Amir Reza & Hanifi, Amir Reza & Shahbakhti, Mahdi, 2023. "Design, thermodynamic, and economic analyses of a green hydrogen storage concept based on solid oxide electrolyzer/fuel cells and heliostat solar field," Renewable Energy, Elsevier, vol. 215(C).
- Oliver Wagner & Thomas Adisorn & Lena Tholen & Dagmar Kiyar, 2020. "Surviving the Energy Transition: Development of a Proposal for Evaluating Sustainable Business Models for Incumbents in Germany’s Electricity Market," Energies, MDPI, vol. 13(3), pages 1-17, February.
- d'Amore-Domenech, Rafael & Leo, Teresa J. & Pollet, Bruno G., 2021. "Bulk power transmission at sea: Life cycle cost comparison of electricity and hydrogen as energy vectors," Applied Energy, Elsevier, vol. 288(C).
- Yong Zuo & Sebastiano Bellani & Michele Ferri & Gabriele Saleh & Dipak V. Shinde & Marilena Isabella Zappia & Rosaria Brescia & Mirko Prato & Luca Trizio & Ivan Infante & Francesco Bonaccorso & Libera, 2023. "High-performance alkaline water electrolyzers based on Ru-perturbed Cu nanoplatelets cathode," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
- Tubagus Aryandi Gunawan & Alessandro Singlitico & Paul Blount & James Burchill & James G. Carton & Rory F. D. Monaghan, 2020. "At What Cost Can Renewable Hydrogen Offset Fossil Fuel Use in Ireland’s Gas Network?," Energies, MDPI, vol. 13(7), pages 1-23, April.
- Mehar Ullah & Daniel Gutierrez-Rojas & Eero Inkeri & Tero Tynjälä & Pedro H. J. Nardelli, 2022. "Operation of Power-to-X-Related Processes Based on Advanced Data-Driven Methods: A Comprehensive Review," Energies, MDPI, vol. 15(21), pages 1-17, October.
- Trowell, K.A. & Goroshin, S. & Frost, D.L. & Bergthorson, J.M., 2020. "Aluminum and its role as a recyclable, sustainable carrier of renewable energy," Applied Energy, Elsevier, vol. 275(C).
- Fambri, Gabriele & Diaz-Londono, Cesar & Mazza, Andrea & Badami, Marco & Sihvonen, Teemu & Weiss, Robert, 2022. "Techno-economic analysis of Power-to-Gas plants in a gas and electricity distribution network system with high renewable energy penetration," Applied Energy, Elsevier, vol. 312(C).
- Mikovits, Christian & Wetterlund, Elisabeth & Wehrle, Sebastian & Baumgartner, Johann & Schmidt, Johannes, 2021. "Stronger together: Multi-annual variability of hydrogen production supported by wind power in Sweden," Applied Energy, Elsevier, vol. 282(PB).
- Kate Dooley & Ellycia Harrould‐Kolieb & Anita Talberg, 2021. "Carbon‐dioxide Removal and Biodiversity: A Threat Identification Framework," Global Policy, London School of Economics and Political Science, vol. 12(S1), pages 34-44, April.
- Gorre, Jachin & Ortloff, Felix & van Leeuwen, Charlotte, 2019. "Production costs for synthetic methane in 2030 and 2050 of an optimized Power-to-Gas plant with intermediate hydrogen storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Renata Włodarczyk & Paulina Kaleja, 2023. "Modern Hydrogen Technologies in the Face of Climate Change—Analysis of Strategy and Development in Polish Conditions," Sustainability, MDPI, vol. 15(17), pages 1-25, August.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51908-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.